Matrix Factorizations

Kim, Hyun-Min

Department of Mathematics, Pusan National University E-mail:hyunmin@pusan.ac.kr Phone: 510-1060, 2596, 010-3833-8200

イロン 不同と 不同と 不同と

Schedule for Lecture

- Introduction to Numerical Linear Algebra
 - What is the numerical linear algebra?
 - Why?
 - How?
- Matrix Factorizations
 - What are matrix factorizations?
 - Existence and uniqueness of matrix factorizations
 - Why?
 - How?

同 と く ヨ と く ヨ と

Two matrices

- LU, QR Factorizations

Three matrices

- Diagonalization
- Jordan canonical form
- Schur decompositions
- Singular decomposition

白 ト く ヨ ト く ヨ ト

Linear Algebra

Math.

Linear Algebra by S. Friedberg, A. Insel and L. Spence Chapters 1, 2, 3, 4, 5, 6, 7

→ 同 → → 目 → → 目 →

Linear Algebra

Math.

Linear Algebra by S. Friedberg, A. Insel and L. Spence Chapters 1, 2, 3, 4, 5, 6, 7

Eng.

Elementary Linear Algebra by H. Anton and C. Rorres Chapters 1, 2, 3, 4, 5, 6, 7, 8

イロン スポン イヨン イヨン

Mathematical Programming

Math.

Mathematica, Maple, MATLAB

문 문 문

Mathematical Programming

Math.

Mathematica, Maple, MATLAB

(本間) (本語) (本語)

Errors

Definition

x: the true value

 x^* : an approximation to x

•
$$|x - x^*|$$
: Absolute Error

▶
$$\frac{|x - x^*|}{|x|}$$
 (x ≠ 0): Relative Error

・ロト ・回ト ・モト ・モト

Errors

Definition

x: the true value

 $x^*\!\!:$ an approximation to x

•
$$|x - x^*|$$
: Absolute Error

•
$$\frac{|x-x^*|}{|x|}$$
 $(x \neq 0)$: Relative Error

Which one is better?

・ロト ・回ト ・モト ・モト

Errors

Definition

x: the true value

 $x^*\!\!:$ an approximation to x

•
$$|x - x^*|$$
: Absolute Error

•
$$\frac{|x-x^*|}{|x|}$$
 $(x \neq 0)$: Relative Error

Which one is better?

Why?

・ロト ・回ト ・モト ・モト

 Errors in mathematical modelling: Simplifying and Assumptions

◆□ > ◆□ > ◆臣 > ◆臣 > ○

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders (Prgramming Errors): Large programmes, Subprogrammes

・ 回 と ・ ヨ と ・ ヨ と

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders (Prgramming Errors): Large programmes, Subprogrammes
- Errors in input: Errors in data transfer, uncertainties associated with measurements

(過) (目) (日)

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders (Prgramming Errors): Large programmes, Subprogrammes
- Errors in input: Errors in data transfer, uncertainties associated with measurements
- Machine errors by computer (Floating point arithmetic): Rounding and Chopping, Underflow and Overflow

・ 同 ト ・ ヨ ト ・ ヨ ト …

Arithmetic

In 1985 IEEE(Institute for Electrical and Electronic Engineers) report: Binary Floating Point Arithmetic Standard 754.

.⊒ .⊳

Arithmetic

In 1985 IEEE(Institute for Electrical and Electronic Engineers) report: Binary Floating Point Arithmetic Standard 754.

Single, Double and Extended Precisions

向下 イヨト イヨト

Algorithms

Examining approximation procedures involving finite sequence of calculations.

Stable: Small changes in the initial data

.⊒ .⊳

Algorithms

Examining approximation procedures involving finite sequence of calculations.

- Stable: Small changes in the initial data
- Unstable: Otherwise

I ∃ →

Algorithms

Examining approximation procedures involving finite sequence of calculations.

- Stable: Small changes in the initial data
- Unstable: Otherwise
- Conditionally Stable: Stable only for certain of initial data

→ ∃ →

Convergence

$$\{\alpha_n\}_{n=1}^{\infty}, \ \{\beta_n\}_{n=1}^{\infty}: \text{ sequences}$$
$$\lim_{n \to \infty} \beta_n = 0, \qquad \lim_{n \to \infty} \alpha_n = \alpha.$$
If $\exists K > 0$ s. t. $|\alpha_n - \alpha| \le |\beta_n|$ for large *n* then $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with the rate of convergence $O(\beta_n)$.

$$\alpha_n = \alpha + O(\beta_n)$$

・ロン ・四 と ・ ヨン ・ ヨン

DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY

TEL:+82-51-510-1767 / FAX:+82-51-581-1458

LU factorization $A = \mathbb{R}^{m \times n}$ 1 where $L \in \mathbb{R}^{m \times m}$: lower triangular matrix $||\rangle$ with diagonal entries : 1 UE IR MXN : Echelon form of A If m=n LERNXN LE IR^{n×n} : upper triangular matrix 1) Existence < Theory > 2 Uniqueness 3 Why? A How can we find ? 3 Why? An=b $\Box \cup n = b$. Let $\Box n = y$ then $\Box \cup n = Ly = b$ + torward substitution x: backward substitution

DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY

PUSAN 609-735 Republic of Korea

TEL:+82-51-510-1767 / FAX:+82-51-581-1458

Let
$$A = \begin{bmatrix} A_{n-1} & C \\ c^{T} & d \end{bmatrix}$$
 where $c \in \mathbb{R}^{n-1}$, $d \in \mathbb{R}^{n}$

$$\begin{bmatrix} U_{n-1}^{T} & 0 \\ r^{T} & \beta \end{bmatrix} \begin{bmatrix} U_{n-1} & r \\ 0 & \beta \end{bmatrix} = U^{T} U$$

$$\begin{bmatrix} U_{n-1}^{T} & U_{n-1} & U_{n-1}^{T} r \\ r^{T} & U_{n-1} & r^{T}r + \beta^{3} \end{bmatrix}$$
If $\bigcup_{n-1}^{T} r = C$ and $r^{T}r + \beta^{3} = d$
(i) $r :$ unique ($: U_{n-1}^{T} :$ nonsingular)
then $\beta^{2} = d - r^{T}r > 0$?
(ii) $0 < \det(A) = \det(U^{T})(U) = \det(U_{n-1})^{2}\beta^{2}$
 $\therefore \beta^{3} > 0$
Thus, $\exists ! \beta > 0$
Algorithm
for $j = 1:n$
 $for i = 1:j-1$

$$u_{nj} = (a_{nj} - \sum_{k=1}^{j-1} u_{kn} u_{kj}) / \gamma_{nn}$$

end

$$u_{jj} = (a_{jj} - \sum_{k=1}^{j-1} u_{kj}^2)^{1/2}$$

end

$$\begin{array}{c} \hline \begin{array}{c} \hline \\ PUSAN ANTONAL UNIVERSITY \\ PUSAN NATIONAL UNIVERSITY \\ PUSAN ANTONAL UNIVERSITY \\ \hline \\ PUSAN SATIONAL UNIVERS$$

PUSAN 600-735
Republic of Korea
TEL:+R2-SI-SIG-1767/FAX:+82-SI-581-1438
Show: (i) Q has arthonormal columns.
i.e.
$$\{\frac{1}{9}, \frac{1}{9}, \cdots, \frac{1}{9}, \frac{1}{5}$$
: orthonormal set: a.k.
(ii) R: nonsingular
 $Y_{ii,i} \neq 0$ for $i=1,2,\cdots,n$.
(iii) R: nonsingular
If $Y_{\lambda i} = 0$ then $a_i = Y_{i,i} \frac{1}{9}_1 + \cdots + Y_{in,i} \frac{1}{9}_{\lambda in} + (V_{ii}, \frac{1}{9}_{\lambda in})$.
But an,..., $a_{in}, a_{i} = Y_{ii} \frac{1}{9}_1 + \cdots + Y_{in,i} \frac{1}{9}_{\lambda in} + (V_{ii}, \frac{1}{9}_{\lambda in})$.
But $a_{i,\cdots}, a_{i,n}, a_{i} = 1$ innearly independent, contradiction
Thus $Y_{ii} \neq 0$ for $i=1,2,\cdots,n$.
Since R: upper triangular, R: nonsingular.
Note: Grvan - Schmidt Process
 $\{Z_{i}, \cdots, Z_{i}, f\}$: a basis of a subspace W
 $W \subseteq R^{R}$
 $V_{i} = \pi_{i}$
 $V_{k} = \pi_{k} - (\frac{V_{i} + \pi_{k}}{V_{k} + V_{i}})V_{i} - (\frac{V_{k} + \pi_{k}}{V_{k} + V_{k}})V_{k} - \cdots - (\frac{V_{k-1} - \pi_{k}}{V_{k-1} + V_{k-1}})V_{k-1}$
 $W_{i} = Span (\pi_{i}, \cdots, \pi_{k})$ for $i=1, \cdots, k$
Then for each $i=1, \cdots, k$, $\{W_{i}, \cdots, V_{k}\}$: orthogonal basis for Wi.

PUSAN 609-735 Republic of Korea

DEPARTMENT OF MATHEMATICS

TINTER OTHER

PUSAN 609-735 DEPARTMENT OF MATHEMATICS Republic of Korea PUSAN NATIONAL UNIVERSITY TEL: +82-51-510-1767 / FAX: +82-51-51-581-1458 $Q^{H}AQ = \begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \stackrel{P}{=} T$ Let X = QR AX = XBX=QR $\begin{bmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q^H A Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q^H A X = Q^H X B = Q^H Q \begin{bmatrix} R_1 \\ 0 \end{bmatrix} B$ $=\begin{bmatrix} R_i \\ 0 \end{bmatrix} B.$ Since Ri: nonsingular, Tai Ri= O and Tu Ri= RiB. $R_i^{-1}T_{ii}R_i = B$ The is similar to B. $T_{21} = 0$ and $\lambda(T_n) = \lambda(B)$ Show: $\lambda(T_u) = \lambda(A) \cap \lambda(B)$ Suppose $\lambda(A) = \lambda(T) = \lambda(T_n) \cup \lambda(T_{22})$: we need to prove $\Rightarrow \quad \lambda(A) \cap \lambda(B) = \left(\lambda(T_{11}) \sqcup \lambda(T_{22}) \cap \lambda(T_{11})\right)$ 0.K. $= \lambda (T_{ii})$ Lemma 7.1.1. TECnin $\Rightarrow \lambda(T) = \lambda(T_{11}) \cup \lambda(T_{22}).$ $\begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \begin{pmatrix} P \\ \varphi \end{pmatrix}$ proof. $[\eta_{1} = \begin{bmatrix} T_{\mu} & T_{12} \\ 0 & T_{22} \end{bmatrix} \begin{bmatrix} \varkappa_{1} \\ \varkappa_{12} \end{bmatrix} = \lambda \begin{bmatrix} \varkappa_{1} \\ \varkappa_{12} \end{bmatrix}$ where $\varkappa_{1} \in \mathbb{C}^{P}$ $\varkappa_{2} \in \mathbb{C}^{\frac{Q}{P}}$ (1) 12=0 $\int_{22} \eta_{\lambda} = \lambda \eta_{\lambda} \Rightarrow \lambda \in$ λ(T22) (11) 2/2=0 $T_{II} \gamma_{I} = \lambda \gamma_{I} \Rightarrow \lambda \in \lambda (T_{II})$ $\therefore \ \lambda(T) \subset \lambda(T_{u}) \cup \lambda(T_{22})$

DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY TEL: +82-51-510-1767 / FAX: +82-51-51-581-1458

Theorem 7.1.6 (Block Diagonal Decomposition)

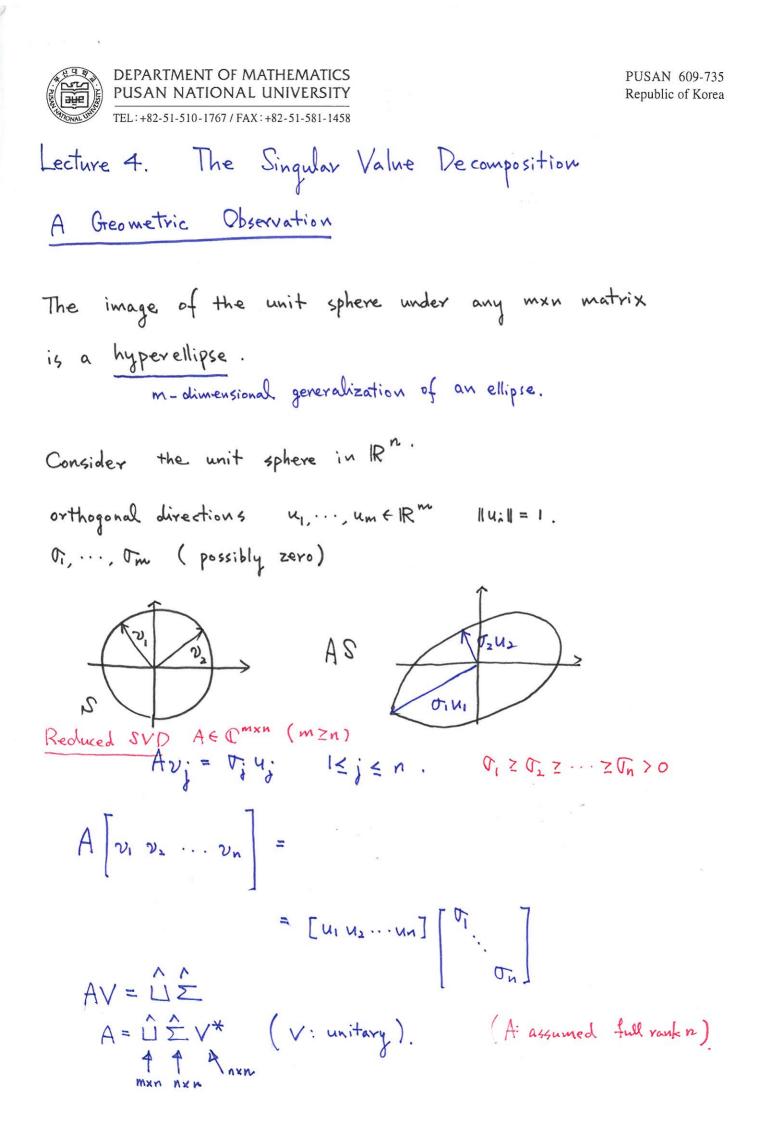
General version of Lemma 7.1.5

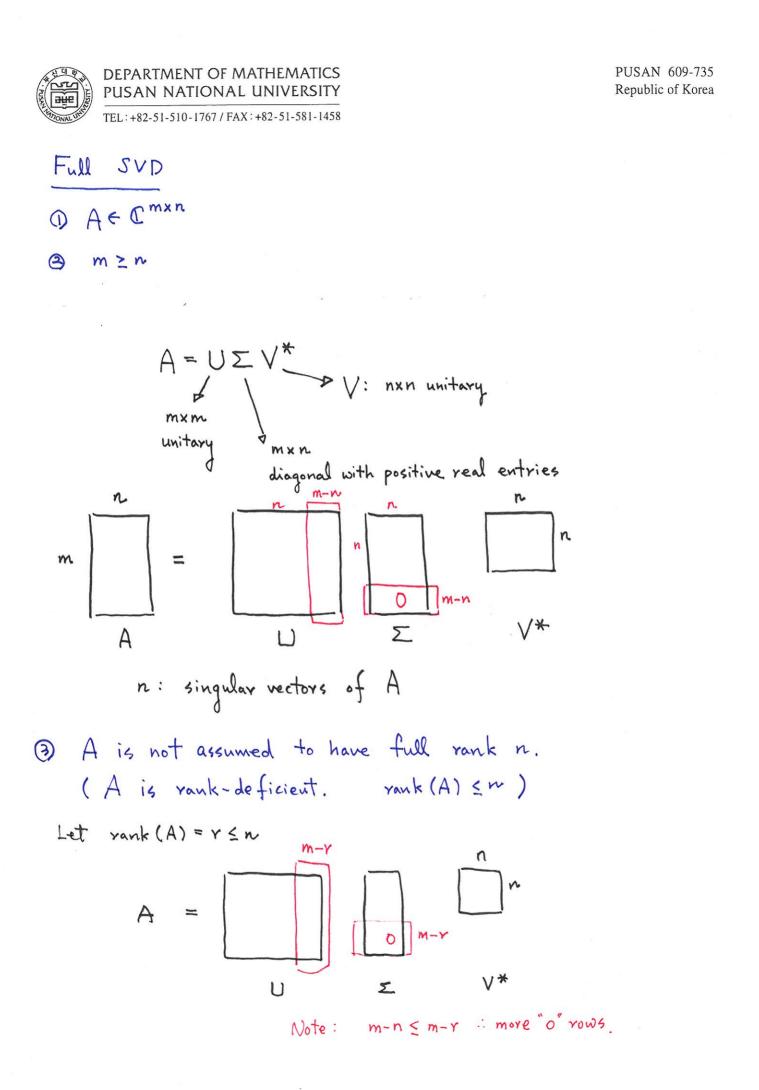
PUSAN 609-735 Republic of Korea

Til. Til: square

ŵ

$$A \in \mathbb{C}^{n \times n}$$
(i) $Q^{H}A Q = T = \begin{bmatrix} T_{11} T_{12} \cdots T_{14} \\ T_{22} \cdots T_{25} \end{bmatrix}$
T₁₁ : square for $\lambda = 1, \cdots, q$
(ii) $A(T_{21})$ and $A(T_{22})$: disjonit whenever $\lambda \neq j$
 $\Rightarrow \exists X : nonsingular \quad \text{s.t.} \quad X^{-1}A X = \text{diag}(T_{11}, \cdots, T_{qq})$
Sketch of proof.
By induction
(i) 2×2 block : $Q^{H}AQ = T = \begin{bmatrix} T_{11} T_{12} \\ 0 T_{22} \end{bmatrix}$
 $\lambda(T_{11}) \cap \lambda(T_{22}) = \emptyset$. T₁₁
then $\exists Y \text{ s.t.} Y^{-1}T Y = \text{diag}(T_{11}, T_{22})$
(ii) $\exists X \exists$ block : $Q^{H}AQ = T = \begin{bmatrix} T_{11} T_{12} \\ 0 T_{22} \end{bmatrix}$
then $\exists Y \text{ s.t.} Y^{-1}T Y = \text{diag}(T_{11}, T_{22})$
 $\exists Y_{2} \text{ s.t.} Y_{1}^{-1}T Y_{1} = \begin{bmatrix} T_{11} T_{12} \\ 0 T_{22} \end{bmatrix}$
 $\exists Y_{2} \text{ s.t.} Y_{2}^{-1}(Y_{1}^{-1}TY_{1})Y_{2} = \begin{bmatrix} T_{11} T_{12} \\ 0 T_{22} \end{bmatrix}$
(ii) 4×4 block





DEPARTMENT OF MATHEMATICS PUSAN NATIONAL UNIVERSITY

TEL:+82-51-510-1767 / FAX:+82-51-581-1458

Theorem