Matrix Factorizations

Kim, Hyun-Min
Department of Mathematics, Pusan National University
E-mail:hyunmin@pusan.ac.kr
Phone: 510-1060, 2596, 010-3833-8200

Schedule for Lecture

- Introduction to Numerical Linear Algebra
- What is the numerical linear algebra?
- Why?
- How?
- Matrix Factorizations
- What are matrix factorizations?
- Existence and uniqueness of matrix factorizations
- Why?
- How?
- Two matrices
- LU, QR Factorizations
- Three matrices
- Diagonalization
- Jordan canonical form
- Schur decompositions
- Singular decomposition

Linear Algebra

Math.

Linear Algebra by S. Friedberg, A. Insel and L. Spence Chapters 1, 2, 3, 4, 5, 6, 7

Linear Algebra

Math.
Linear Algebra by S. Friedberg, A. Insel and L. Spence Chapters 1, 2, 3, 4, 5, 6, 7

```
Eng.
Elementary Linear Algebra by H. Anton and C. Rorres
Chapters 1, 2, 3, 4, 5, 6, 7, 8
```


Mathematical Programming

Math.
Mathematica, Maple, MATLAB

Mathematical Programming

Math.
Mathematica, Maple, MATLAB

Eng.

Fortran, C, MATLAB

Errors

Definition

x : the true value
x^{*} : an approximation to x

- $\left|x-x^{*}\right|$: Absolute Error
- $\frac{\left|x-x^{*}\right|}{|x|}(x \neq 0)$: Relative Error

Errors

Definition

x : the true value
x^{*} : an approximation to x

- $\left|x-x^{*}\right|$: Absolute Error
- $\frac{\left|x-x^{*}\right|}{|x|}(x \neq 0)$: Relative Error

Which one is better?

Errors

Definition

x : the true value
x^{*} : an approximation to x

- $\left|x-x^{*}\right|$: Absolute Error
- $\frac{\left|x-x^{*}\right|}{|x|}(x \neq 0)$: Relative Error

Which one is better?
Why?

Sources of Errors

- Errors in mathematical modelling: Simplifying and Assumptions

Sources of Errors

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders

Sources of Errors

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders (Prgramming Errors): Large programmes, Subprogrammes

Sources of Errors

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders (Prgramming Errors): Large programmes, Subprogrammes
- Errors in input: Errors in data transfer, uncertainties associated with measurements

Sources of Errors

- Errors in mathematical modelling: Simplifying and Assumptions
- Blunders (Prgramming Errors): Large programmes, Subprogrammes
- Errors in input: Errors in data transfer, uncertainties associated with measurements
- Machine errors by computer (Floating point arithmetic): Rounding and Chopping, Underflow and Overflow

Arithmetic

In 1985 IEEE(Institute for Electrical and Electronic Engineers) report: Binary Floating Point Arithmetic Standard 754.

Arithmetic

> In 1985 IEEE(Institute for Electrical and Electronic Engineers) report: Binary Floating Point Arithmetic Standard 754.

Single, Double and Extended Precisions

Algorithms

Examining approximation procedures involving finite sequence of calculations.

- Stable: Small changes in the initial data

Algorithms

Examining approximation procedures involving finite sequence of calculations.

- Stable: Small changes in the initial data
- Unstable: Otherwise

Algorithms

Examining approximation procedures involving finite sequence of calculations.

- Stable: Small changes in the initial data
- Unstable: Otherwise
- Conditionally Stable: Stable only for certain of initial data

Convergence

$\left\{\alpha_{n}\right\}_{n=1}^{\infty},\left\{\beta_{n}\right\}_{n=1}^{\infty}$: sequences

$$
\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \lim _{n \rightarrow \infty} \alpha_{n}=\alpha
$$

If $\exists K>0$ s. t. $\left|\alpha_{n}-\alpha\right| \leq\left|\beta_{n}\right|$ for large n then $\left\{\alpha_{n}\right\}_{n=1}^{\infty}$ converges to α with the rate of convergence $O\left(\beta_{n}\right)$.

$$
\alpha_{n}=\alpha+O\left(\beta_{n}\right)
$$

$L \cup$ factorization

$$
A=\mathbb{R}^{m \times n}
$$

II
$L \sqcup$
where $L \in \mathbb{R}^{m \times m}$: lower triangular matrix with diagonal entries: 1

$$
U \in \mathbb{R}^{m \times n} \text { : Echelon form of } A
$$

If $m=n$
$L \in \mathbb{R}^{n \times n}$
$\sqcup \in \mathbb{R}^{n \times n}$: upper triangular matrix
<Theory>
(1) Existence
(2) Uniqueness
(3) Why?
(4) How can we find?
(3) Why?

$$
A x=b
$$

$L U x=b$. Let $U_{x}=y$ then $L \sqcup x=L y=b$ \downarrow chis y : forward substitution x : backward substitution

A: symmetric positive definite $\left(A=A^{\top}, \quad x^{\top} A x>0 \quad \forall x \in \mathbb{R}^{n}\right)$
$\Rightarrow A$: nonsingular $(\operatorname{det}(A)>0)$

$$
\begin{aligned}
& a_{i i}>0 \\
& \left(a_{i j}\right)^{2}<a_{i j} a_{j j}
\end{aligned}
$$

$A: \operatorname{det}\left(A\left(1: k_{k}\right)\right) \neq 0, \quad A:$ nonsingular

$$
k=1, \cdots, n-1
$$

\therefore Exists, is unique.

$$
A=U^{\top} \sqcup \quad \text { (Cholesky Factorization) }
$$

proof 1 .

$$
\begin{aligned}
& A=L U \quad \text { and } A^{\top}=(L U)^{\top}=U^{\top} L^{\top} \\
& \therefore A=A^{\top} \Rightarrow L U=U^{\top} L^{\top} \quad \therefore \quad L=U^{\top} \quad A=U^{\top} U
\end{aligned}
$$

not true.
proof 2 .
By induction.
(i) $n=1$.

$$
a=\sqrt{a} \sqrt{a}=(-\sqrt{a})(-\sqrt{a})
$$

$\therefore \exists!\quad U \in \mathbb{R}^{n \times n}$ with positive diagonal entries s.t. $A=U^{\top} U$.
(ii) Assume that it is true for $n-1$.

A: symmetric positive definite
\Rightarrow leading principal submatrix $A_{n-1}:$ symmetric positive definite

$$
\left[\begin{array}{l|}
A_{n-1} \\
\hline
\end{array}\right]
$$

unique Cholesky factorization: $A_{n-1}=U_{n-1}^{\top} U_{n-1}$.

Show: $A=U^{\top} U$
Let $A=\left[\begin{array}{ll}A_{n-1} & c \\ c^{\top} & \alpha\end{array}\right]$ where $c \in \mathbb{R}^{n-1}, \quad \alpha \in \mathbb{R}$

$$
\underbrace{\left[\begin{array}{cc}
u_{n-1}^{\top} & 0 \\
r^{\top} & \beta
\end{array}\right]}\left[\begin{array}{cc}
U_{n-1} & r \\
0 & \beta
\end{array}\right]=U^{\top} U^{U_{n-1}^{\top} U_{n-1}} \begin{array}{|ll}
U_{n-1}^{\top} r \\
r^{\top} U_{n-1} & r^{\top} r+\beta^{2}
\end{array}]
$$

If $U_{n-1}^{\top} r=c$ and $r^{\top} r+\beta^{2}=\alpha$
(i) r : unique $\left(\because U_{n-1}^{\top}\right.$: nonsingular)

$$
\text { then } \beta^{2}=\alpha-r^{\top} r>0 \text { ? }
$$

(ii) $0<\operatorname{det}(A)=\operatorname{det}\left(U^{\top}\right)(U)=\operatorname{det}\left(U_{n-1}\right)^{2} \beta^{2}$

$$
\therefore \quad \beta^{2}>0
$$

$$
\text { Thus, } \exists \text { ! } \beta>0
$$

Algorithm
for $j=1: n$

$$
\text { for } \begin{aligned}
i & =1: j-1 \\
u_{i j} & =\left(a_{i j}-\sum_{k=1}^{i-1} u_{k i} u_{k j}\right) / r_{i \sim}
\end{aligned}
$$

end

$$
u_{j j}=\left(a_{j j}-\sum_{k=1}^{j-1} u_{k j}^{2}\right)^{1 / 2}
$$

end

$$
n^{3} / 3 \quad \text { flops. }
$$

$\langle Q R$ factorization >

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \text { (min) } \\
& {\left[a_{1} a_{2} \cdots a_{n}\right]}
\end{aligned}
$$

$$
\Rightarrow \quad A=Q R \quad \text { where } \quad \underset{11}{ } \in \mathbb{R}^{m \times n} \text { with }\left\{q_{1}, q_{2}, \cdots q_{n}\right\} \text {. }
$$

$$
\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]
$$

(i) $\left\|q_{i}\right\|=1 \quad$ for $i=1, \ldots, n$
(ii) $\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}$: orthogonal set.

$$
Q^{\top} Q=I \in \mathbb{R}^{n \times n}
$$

$$
R \in \mathbb{R}^{n \times n}: \text { nonsingular }
$$ upper triangular

Proof. By applying the Gram-Schmitt Process to A with normalizations $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$: linearly independent set

$$
\Rightarrow\left\{q_{1}, q_{2}, \cdots, q_{n}\right\}: \text { orthonormal set }
$$

For each $k=1,2, \cdots, n$,

Therefore, $\exists r_{1 i}, \gamma_{2 i}, \cdots, r_{i i}$ s.t.

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{1}=r_{11} q_{1} \\
a_{2}=r_{12} q_{1}+r_{22} q_{2} \\
\vdots \\
a_{n}=r_{1 n} q_{1}+r_{12} q_{22}+\cdots+r_{n n} q_{n}
\end{array}\right. \\
& A=\left[\begin{array}{lll}
a_{1} a_{2} \cdots & a_{n}
\end{array}\right]=\left[\begin{array}{llll}
q_{1} & q_{2} & \cdots & q_{n}
\end{array}\right]\left[\begin{array}{cccc}
r_{11} & r_{12} & \cdots & r_{1 n} \\
0 & r_{22} & \cdots & r_{2 n} \\
\vdots & \vdots & \ddots & \\
0 & 0 & \cdots & r_{n n}
\end{array}\right]=Q R
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Span}\left(a_{1}, \cdots, a_{i}\right)=\operatorname{Span}\left(q_{1}, \cdots, q_{i}\right) \\
& \Gamma \operatorname{Span}\left(a_{1}\right)=\operatorname{Span}\left(q_{1}\right) \\
& \operatorname{Span}\left(a_{1}, a_{2}\right)=\operatorname{Span}\left(q_{1}, q_{2}\right) \\
& \operatorname{Span}\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\operatorname{Span}\left(q_{1}, q_{1}, q_{n}\right)
\end{aligned}
$$

TEL:+82-51-510-1767 / FAX:+82-51-581-1458
Show: (i) Q has orthonormal columns.

$$
\text { i.e. }\left\{q_{1}, q_{2}, \cdots q_{n}\right\}: \text { orthonormal set: oik. }
$$

(ii) R : nonsingular

$$
r_{i i} \neq 0 \quad \text { for } i=1,2, \cdots, n
$$

(iii) R : upper triangular: $0 . \mathrm{K}$
(ii) R : nonsingular

If $r_{i i}=0$ then $a_{i}=r_{1 i} q_{1}+\cdots+r_{i-1, i} q_{i-1}+r_{i i} q_{i}$
$\therefore a_{i}$ is a linear combination of q_{1}, \ldots, q_{i-1}.
Hence $a_{i} \in \operatorname{Span}\left(q_{1}, \cdots, q_{i-1}\right)=\operatorname{Span}\left(a_{1}, \cdots, a_{i-1}\right)$.
But $a_{1}, \cdots, a_{i-1}, a_{i}$: linearly independent, contradiction Thus $r_{i i} \neq 0$ for $i=1,2, \cdots, n$.

Since R : upper triangular, $\quad R$: non singular.
Note: Gram -Schmidt Process

$$
\begin{aligned}
& \left\{x_{1}, \cdots, x_{k}\right\}: \text { a basis of a subspace } W \\
& W \subset \mathbb{R}^{n} \\
& v_{1}=x_{1} \\
& v_{2}=x_{2}-\left(\frac{v_{1} \cdot x_{2}}{v_{1} \cdot v_{1}}\right) v_{1} \\
& \vdots \\
& v_{k}=x_{k}-\left(\frac{v_{1} \cdot x_{k}}{v_{1} \cdot v_{1}}\right) v_{1}-\left(\frac{v_{2} \cdot x_{k}}{v_{2} \cdot v_{2}}\right) v_{2}-\cdots-\left(\frac{v_{k-1} \cdot x_{k}}{v_{k-1} \cdot v_{k-1}}\right) v_{k-1} \\
& W_{i}=\operatorname{Span}\left(x_{1}, \cdots, x_{i}\right) \quad \text { for } i=1, \cdots, k
\end{aligned}
$$

Then for each $i=1, \cdots, k, \quad\left\{v_{1}, \cdots, \nu_{i}\right\}$: orthogonal basis for W_{i}.
7.1.2 Decoupling 7.1.3 The Basic Unitary Decompositions.

Theorem 2.1.3 (Schur Decomposition)

$$
A \in \mathbb{C}^{n \times n}
$$

$$
\begin{aligned}
& A \in \mathbb{C} \\
& \exists Q \in \mathbb{C}^{n \times n} \text {, unitary } \quad \text { s.t. } \quad Q^{H} A Q=T=D+N
\end{aligned}
$$

where $D=\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ and $N \in \mathbb{C}^{n \times n}$, strictly upper triangular. proof.
(i) $n=1$: obvious
(ii) ${ }_{n-1}$: holds $\left[\tilde{U}^{H} C \tilde{U}=\tilde{T}\right]$

Show: $\quad Q^{H} A Q=T$
Find $Q=U\left[\begin{array}{ll}1 & 0 \\ 0 & \tilde{U}\end{array}\right] \quad U$: unitary.

$$
Q^{H} A Q=\left[\begin{array}{cc}
1 & 0 \\
0 & \tilde{U}^{H}
\end{array}\right] U^{H} A U\left[\begin{array}{ll}
1 & 0 \\
0 & \tilde{U}
\end{array}\right]=T
$$

$\left[\begin{array}{cc}\lambda & \omega^{H} \\ 0 & C\end{array}\right]_{n-1}^{1} \quad$ Question: (i) existence
(ii) $\lambda, \omega=$?

$$
\begin{array}{lll}
0 & C & J^{n-1} \\
1 & n-1 & \|
\end{array}\left[\begin{array}{cc}
\lambda & \omega^{H} \tilde{U} \\
0 & \tilde{\omega}^{H} \subset \tilde{\omega}
\end{array}\right]
$$

$$
\begin{aligned}
& A_{x}=\lambda x \quad x \neq 0 \\
& \text { with } B=\lambda .
\end{aligned}
$$

Lemma 7.1.2

$$
A \in \mathbb{C}^{\text {7.1.2 }}, \quad B \in \mathbb{C}^{p \times p}, \quad X \in \mathbb{C}^{n \times p}
$$

$$
A X=X B, \quad \operatorname{rank}(X)=p
$$

$\Rightarrow \exists Q \in \mathbb{C}^{n \times n}$ unitary st. $Q^{H} A Q=T=\left[\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22} \\ p & { }_{n-p}^{p}\end{array}{ }_{n-p}^{p}\right.$
where $\lambda\left(T_{11}\right)=\lambda(A) \cap \lambda(B)$
proof. Let $X=Q\left[\begin{array}{c}R_{1} \\ 0\end{array}\right] \quad Q \in \mathbb{C}^{n \times n}, \quad R_{1} \in \mathbb{C}^{p \times p}$
: QR factorization of X.

TEL : +82-51-510-1767 / FAX : +82-51-51-581-1458
Let $Q^{H} A Q=\left[\begin{array}{ll}T_{11} & T_{12} \\ T_{21} & T_{22}\end{array}\right]_{n-p}^{P}=T$

$$
\begin{aligned}
& { }^{P} T=\begin{array}{c}
n-p \\
T \\
Q^{H} A Q \\
R_{21}
\end{array} \\
{\left[\begin{array}{ll}
T_{22}
\end{array}\right]\left[\begin{array}{c}
x=Q R \\
T_{11} \\
0
\end{array}\right] \stackrel{\downarrow}{=} Q^{H} A Q\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]=Q^{H} A X=Q^{H} \times B } & \stackrel{\downarrow}{=}=Q^{H} Q\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] B \\
& =\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] B .
\end{aligned}
$$

Since R_{1} : nonsingular, $T_{21} R_{1}=0$ and $T_{11} R_{1}=R_{1} B$.

$$
R_{1}^{-1} T_{11} R_{1}=B
$$

T_{11} is similar to B.

$$
\therefore \quad T_{21}=0 \text { and } \lambda\left(T_{n}\right)=\lambda(B)
$$

Show: $\quad \lambda\left(T_{H}\right)=\lambda(A) \cap \lambda(B)$
Suppose $\lambda(A)=\lambda(T)=\lambda\left(T_{11}\right) \cup \lambda\left(T_{22}\right)$: we need to prove

$$
\left.\begin{array}{rl}
\lambda(A)=\lambda(T) & =\lambda\left(1_{2}\right) \quad \Rightarrow \quad \lambda(A) \cap \lambda(B)
\end{array}\right)=\left(\lambda\left(T_{11}\right) \cup \lambda\left(T_{22}\right) \cap \lambda\left(T_{11}\right)\right.
$$

Lemma 7.1.1.

$$
\begin{aligned}
& T \in \mathbb{C}^{n \times n} \\
& \| \\
& {\left[\begin{array}{ll}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]_{q}^{p} \quad \Rightarrow \lambda(T)=\lambda\left(T_{11}\right) \cup \lambda\left(T_{22}\right) .}
\end{aligned}
$$

proof.

$$
T_{x}=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\lambda\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \text { where } \quad x_{1} \in \mathbb{C}^{p} \quad x_{2} \in \mathbb{C}^{\frac{q}{8}}
$$

(i)

$$
\begin{aligned}
& x_{2} \neq 0 \\
& T_{22} x_{2}=\lambda x_{2} \quad \Rightarrow \quad \lambda \in \lambda\left(T_{22}\right)
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& x_{2}=0 \\
& T_{11} x_{1}=\lambda x_{1} \Rightarrow \lambda \in \lambda\left(T_{11}\right) \\
& \therefore \lambda(T) \subset \lambda\left(T_{11}\right) \cup \lambda\left(T_{22}\right)
\end{aligned}
$$

General version of Lemma 7.1 .5
Theorem 7.1.6 (Block Diagonal Decomposition)

$$
A \in \mathbb{C}^{n \times n}
$$

(i) $Q^{H} A Q=T=\left[\begin{array}{cccc}T_{11} & T_{12} & \cdots & T_{1 q} \\ T_{22} & \cdots & T_{2 q} \\ 0 & \ddots & \vdots \\ & & T_{q q}\end{array}\right] . \quad T_{i i}$: square for $i=1, \cdots, q$
(ii) $\lambda\left(T_{i i}\right)$ and $\lambda\left(T_{j j}\right)$: disjonit whenever $i \neq j$
$\Rightarrow \exists X$: nonsingular sit. $\quad X^{-1} A X=\operatorname{diag}\left(T_{11}, \cdots, T_{q q}\right)$
Sketch of proof.
By induction
(i) 2×2 block: $\quad Q^{H} A Q=T=\left[\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right] \quad \lambda\left(T_{11}\right) \cap \lambda\left(T_{22}\right)=\varnothing$. $\quad T_{11}, T_{22}:$ square then $\exists Y$ st. $Y^{-1} T Y=\operatorname{diag}\left(T_{11}, T_{22}\right)$
(ii) 3×3 block: $Q^{H} A Q=T=\left[\begin{array}{cc|c}T_{11} & T_{12} & T_{13} \\ 0 & T_{22} & T_{23} \\ \hline 0 & 0 & T_{33}\end{array}\right]$
then $\exists Y_{1}$ sit. $\quad Y_{1}^{-1} T Y_{1}=\left[\begin{array}{c|cc}T_{11} & T_{12} & 0 \\ 0 & T_{22} & 0 \\ 0 & 0 & T_{38}\end{array}\right]$

$$
\exists Y_{2} \text { sit. } Y_{2}^{-1}\left(Y_{1}^{-1} T Y_{1}\right) Y_{2}=\left[\begin{array}{cc}
T_{41} & 0 \\
T_{22} & T_{32}
\end{array}\right]
$$

(iii) 4×4 block

Lecture 4. The Singular Value Decomposition
A Geometric Observation

The image of the unit sphere under any $m \times n$ matrix is a hyperellipse.
m-dimensional generalization of an ellipse.
Consider the unit sphere in \mathbb{R}^{n}.
orthogonal directions $u_{1}, \cdots, u_{m} \in \mathbb{R}^{m} \quad\left\|u_{i}\right\|=1$. $\sigma_{i}, \cdots, \sigma_{m}$ (possibly zero)

Reduced SVD $A \in \mathbb{C}^{m \times n}(m \geq n)$
AS

$A v_{j}=\sigma_{j} u_{j} \quad 1 \leq j \leq n . \quad \sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n}>0$
$A\left[\begin{array}{llll}v_{1} & v_{2} & \cdots & v_{n}\end{array}\right]=$

$$
=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right]
$$

$$
A V=\hat{U} \hat{\Sigma}
$$

$$
A=\underset{m \times n}{\hat{U}} \sum_{n \times n}^{\hat{u}} V_{n \times n}^{*}
$$

Full sud
(1) $A \in \mathbb{C}^{m \times n}$
(2) $m \geq n$
 diagonal with positive real entries

n : singular vectors of A
(3) A is not assumed to have full rank n. (A is rank-deficient. $\quad \operatorname{rank}(A) \leq w$)

Let $\operatorname{rank}(A)=r \leq n$

Note: $m-n \leq m-r \therefore$ more " 0 " rows.

Theorem
(1) The nonzero singular values of A
$=$ the square roots of the nonzero eigenvalues of $A^{*} A$ or $A A^{*}$.

$$
\left.A^{*} A=\left(U \Sigma V^{*}\right)^{*}\left(U \Sigma V^{*}\right)=V \Sigma^{*} U^{*} U \Sigma V^{*}=V\left(\sum_{n}^{*} \Sigma\right)\right)^{*}
$$

(2) If $A=A^{*}$ then the singular values of A are the absolute values of the eigenvalues of A.
(3)

$$
\begin{aligned}
A \in \mathbb{C}^{m \times m},|\operatorname{det}(A)| & =\prod_{i=1}^{m} a_{i} \\
\left|\operatorname{det}\left(U \Sigma V^{*}\right)\right| & =|\operatorname{det}(\cup)||\operatorname{det}(\Sigma)| \quad\left|\operatorname{det}\left(V^{*}\right)\right|
\end{aligned}=|\operatorname{det}(\Sigma)|
$$

