Algebraic generating functions for languages avoiding Riordan patterns

Donatella Merlini Massimo Nocentini
Dipartimento di Statistica, Informatica, Applicazioni University of Florence, Italy

February 20, 2017 AORC2017

Outline

1 Introduction

2 Binary words avoiding patterns

3 Riordan patterns
(4) The $|w|_{0} \leq|w|_{1}$ constraint

5 Series developments and closed formulae

Outline

1 Introduction

2 Binary words avoiding patterns

3 Riordan patterns

4 The $|w|_{0} \leq|w|_{1}$ constraint

5 Series developments and closed formulae

Definition in terms of $d(t)$ and $h(t)$

- A Riordan array is a pair

$$
\mathrm{D}=\mathcal{R}(\mathrm{d}(\mathrm{t}), \mathrm{h}(\mathrm{t}))
$$

in which $d(t)$ and $h(t)$ are formal power series such that $d(0) \neq 0$ and $h(0)=0$

- if $h^{\prime}(0) \neq 0$ the Riordan array is called proper
- it denotes an infinite, lower triangular array $\left(d_{n, k}\right)_{n, k \in N}$ where:

$$
\mathrm{d}_{\mathrm{n}, \mathrm{k}}=\left[\mathrm{t}^{\mathrm{n}}\right] \mathrm{d}(\mathrm{t}) \mathrm{h}(\mathrm{t})^{\mathrm{k}}
$$

The A and Z sequences

An alternative definition, is in terms of the so-called A-sequence and Z-sequence, with generating functions $A(t)$ and $Z(t)$ satisfying the relations:

$$
\begin{gathered}
h(t)=t A(h(t)), \quad d(t)=\frac{d_{0}}{1-t Z(h(t))} \quad \text { with } \quad d_{0}=d(0) . \\
d_{n+1, k+1}=a_{0} d_{n, k}+a_{1} d_{n, k+1}+a_{2} d_{n, k+2}+\cdots \\
d_{n+1,0}=z_{0} d_{n, 0}+z_{1} d_{n, 1}+z_{2} d_{n, 2}+\cdots
\end{gathered}
$$

The A-matrix [msRv97]

$$
d_{n+1, k+1}=\sum_{i \geq 0} \sum_{j \geq 0} \alpha_{i, j} d_{n-i, k+j}+\sum_{j \geq 0} \rho_{j} d_{n+1, k+j+2}
$$

Matrix $\left(\alpha_{i, j}\right)_{i, j \in \mathbb{N}}$ is called the A-matrix of the Riordan array. If, for $i \geq 0$:

$$
\mathrm{P}^{[i]}(\mathrm{t})=\alpha_{i, 0}+\alpha_{i, 1} t+\alpha_{i, 2} \mathrm{t}^{2}+\alpha_{i, 3} \mathrm{t}^{3}+\ldots
$$

and $Q(t)$ is the generating function for the sequence $\left(\rho_{j}\right)_{j \in \mathbb{N}}$, then we have:

$$
\begin{aligned}
& \frac{h(t)}{t}=\sum_{i \geq 0} t^{i} P^{[i]}(h(t))+\frac{h(t)^{2}}{t} Q(h(t)) \\
& A(t)=\sum_{i \geq 0} t^{i} A(t)^{-i} P^{[i]}(t)+t A(t) Q(t)
\end{aligned}
$$

Outline

1 Introduction

2 Binary words avoiding patterns

3 Riordan patterns

4 The $|w|_{0} \leq|w|_{1}$ constraint

5 Series developments and closed formulae

Binary words avoiding a pattern

- We consider the language $\mathcal{L}^{[p]}$ of binary words with no occurrence of a pattern $\mathfrak{p}=p_{0} \cdots p_{h-1}$
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors:

1 L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. Zeitschrift für Wahrscheinlichkeitstheorie, 53:241-262, 1980.
2 R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms. Addison-Wesley, Reading, MA, 1996.

- The fundamental notion is that of the autocorrelation vector of bits $c=\left(c_{0}, \ldots, c_{h-1}\right)$ associated to a given \mathfrak{p}

The pattern $\mathfrak{p}=10101$

1	0	1	0	1	Tails			
1	0	1	0	1				

The autocorrelation vector is then $c=(1,0,1,0,1)$ and $\mathrm{C}^{[p]}(\mathrm{t})=1+\mathrm{t}^{2}+\mathrm{t}^{4}$ is the associated autocorrelation polynomial

Count respect bits 1 and 0

The gf counting the number F_{n} of binary words with length n not containing the pattern \mathfrak{p} is

$$
F(t)=\frac{C^{[p]}(t)}{t^{h}+(1-2 t) C^{[p]}(t)}
$$

Taking into account the number of bits 1 and 0 in \mathfrak{p} :

$$
F^{[p]}(x, y)=\frac{C^{[p]}(x, y)}{x^{n_{1}^{[p]}} y^{n_{0}^{[p]}}+(1-x-y) C^{[p]}(x, y)}
$$

where $h=n_{0}^{[p]}+n_{1}^{[p]}$ and $C^{[p]}(x, y)$ is the bivariate autocorrelation polynomial. Moreover, $F_{n, k}^{[p]}=\left[x^{n} y^{k}\right] F^{[p]}(x, y)$ denotes the number of binary words avoiding the pattern \mathfrak{p} with \mathfrak{n} bits 1 and k bits 0

An example with $\mathfrak{p}=10101$

Since $C^{[p]}(x, y)=1+x y+x^{2} y^{2}$ we have:

$$
F^{[p]}(x, y)=\frac{1+x y+x^{2} y^{2}}{(1-x-y)\left(1+x y+x^{2} y^{2}\right)+x^{3} y^{2}}
$$

n / k	0	1	2	3	4	5	6	7
0	1	1	1	1	1	1	1	1
1	1	2	3	4	5	6	7	8
2	1	3	6	10	15	21	28	36
3	1	4	9	18	32	52	79	114
4	1	5	13	30	60	109	184	293
5	1	6	18	46	102	204	377	654
6	1	7	24	67	163	354	708	1324
7	1	8	31	94	248	580	1245	2490

...the lower and upper triangular parts

n / k	0	1	2	3	4	5	n / k	0	1	2	3	4	5
0	1						0	1					
1	2	1					1	2	1				
2	6	3	1				2	6	3	1			
3	18	9	4	1			3	18	10	4	1		
4	60	30	13	5	1		4	60	32	15	5	1	
5	204	102	46	18	6	1	5	204	109	52	21	6	1

$$
(n, k) \mapsto(n, n-k) \text { if } k \leq n \quad(n, k) \mapsto(k, k-n) \text { if } n \leq k
$$

Matrices $\mathrm{R}^{[\mathfrak{p}]}$ and $\mathrm{R}^{[\bar{p}]}$

- Let $R_{n, k}^{[p]}=F_{n, n-k}^{[p]}$ with $k \leq n$. In other words, $R_{n, k}^{[p]}$ counts the number of words avoiding \mathfrak{p} with n bits 1 and $n-k$ bits 0
- Let $\overline{\mathfrak{p}}=\bar{p}_{0} \ldots \bar{p}_{h-1}$ be the \mathfrak{p} 's conjugate, where $\bar{p}_{i}=1-p_{i}$
- We obviously have $R_{-n, k}^{[\bar{p}]}=F_{n, n-k}^{[\bar{p}]}=F_{k, k-n}^{[\mathfrak{p}]}$. Therefore, the matrices $R^{[p]}$ and $R^{[p]}$ represent the lower and upper triangular part of the array $\mathrm{F}^{[p]}$, respectively

Outline

1 Introduction

2 Binary words avoiding patterns

3 Riordan patterns

4 The $|w|_{0} \leq|w|_{1}$ constraint

5 Series developments and closed formulae

Riordan patterns [msi1]

- When matrices $\mathrm{R}^{[p]}$ and $\mathrm{R}^{[p]}$ are (both) Riordan arrays?
- We say that $\mathfrak{p}=p_{0} \ldots p_{h-1}$ is a Riordan pattern if and only if

$$
C^{[\mathfrak{p}]}(x, y)=C^{[\mathfrak{p}]}(y, x)=\sum_{i=0}^{\lfloor(h-1) / 2\rfloor} c_{2 i} x^{i} y^{i}
$$

provided that $\left|n_{1}^{[\mathfrak{p}]}-n_{0}^{[\mathfrak{p}]}\right| \in\{0,1\}$
1 D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. Theoretical Computer Science, 412 (27), 2988-3001, 2011.

Theorem 1

Matrices

$$
R^{[p]}=\left(d^{[p]}(t), h^{[p]}(t)\right), \quad R^{[\bar{p}]}=\left(d^{[\bar{p}]}(t), h^{[\bar{p}]}(t)\right)
$$

are both RAs $\leftrightarrow \mathfrak{p}$ is a Riordan pattern.
By specializing this result to the cases $\left|n_{1}^{[\mathfrak{p}]}-n_{0}^{[\mathfrak{p}]}\right| \in\{0,1\}$ and by setting $C^{[p]}(t)=C^{[p]}(\sqrt{t}, \sqrt{t})=\sum_{i \geq 0} c_{2 i} t^{i}$, we have

Theorem 1: the case $n_{1}^{[\mathfrak{p}]}-n_{0}^{[\mathfrak{p}]}=1$

$$
\begin{gathered}
d^{[p]}(t)=\frac{C^{[p]}(t)}{\left.\sqrt{C^{[p]}(t)^{2}-4 t C^{[p]}(t)\left(C^{[p]}\right]}(t)-t^{n^{p}}\right)} \\
h^{[p]}(t)=\frac{C^{[p]}(t)-\sqrt{C^{[p]}(t)^{2}-4 t C^{[p]}(t)\left(C^{[p]}(t)-t^{n_{0}^{p}}\right)}}{2 C^{[p]}(t)} .
\end{gathered}
$$

Theorem 1: the case $n_{1}^{[\mathfrak{p}]}-n_{0}^{[\mathfrak{p}]}=0$

$$
\begin{gathered}
\mathrm{d}^{[p]}(\mathrm{t})=\frac{\mathrm{C}^{[p]}(\mathrm{t})}{\sqrt{\left(\mathrm{C}^{[p]}\right]}(\mathrm{t})+\mathrm{t}^{\left.\mathrm{n}_{0}^{\mathrm{p}}\right)^{2}-4 \mathrm{tC}}{ }^{[p]}(\mathrm{t})^{2}}, \\
\mathrm{~h}^{[p]}(\mathrm{t})=\frac{\mathrm{C}^{[p]}(\mathrm{t})+\mathrm{t}^{\mathrm{n}_{0}^{p}}-\sqrt{\left(\mathrm{C}^{[p]}(t)+\mathrm{t}^{\mathrm{n}}\right)^{2}-4 \mathrm{t} \mathrm{C}^{[p]}(t)^{2}}}{2 \mathrm{C}^{[p]}(\mathrm{t})} .
\end{gathered}
$$

Theorem 1: the case $n_{0}^{[p]}-n_{1}^{[p]}=1$

$$
\begin{gathered}
d^{[p]}(t)=\frac{C^{[p]}(t)}{\sqrt{\left.C^{[p]}(t)^{2}-4 t C^{[p]}\right]}(t)\left(C^{[p]}(t)-t^{n_{1}^{p}}\right)} \\
h^{[p]}(t)=\frac{C^{[p]}(t)-\sqrt{\left.C^{[p]}\right]}(t)^{2}-4 t C^{[p]}(t)\left(C^{[p]}(t)-t^{n_{1}^{p}}\right)}{2\left(C^{[p]}(t)-t^{n_{1}^{p}}\right)} .
\end{gathered}
$$

Formulae for classes of patterns

- $\mathfrak{p}=1^{j+1} 0^{j}$

$$
\mathrm{d}^{[\mathfrak{p}]}(\mathrm{t})=\frac{1}{\sqrt{1-4 \mathrm{t}+4 \mathfrak{t}^{j+1}}}, \quad \mathrm{~h}^{[\mathfrak{p}]}(\mathrm{t})=\frac{1-\sqrt{1-4 \mathrm{t}+4 \mathfrak{t}^{j+1}}}{2}
$$

- $\mathfrak{p}=0^{\mathfrak{j}+1} 1^{j}$

$$
d^{[\mathfrak{p}]}(t)=\frac{1}{\sqrt{1-4 t+4 \mathfrak{t}^{j+1}}}, \quad h^{[\mathfrak{p}]}(t)=\frac{1-\sqrt{1-4 t+4 \mathfrak{t}^{j+1}}}{2\left(1-\mathfrak{t}^{\mathfrak{j}}\right)}
$$

- $\mathfrak{p}=1^{j} 0^{j}$ and $\mathfrak{p}=0^{j} 1^{j}$

$$
d^{[\mathfrak{p}]}(\mathrm{t})=\frac{1}{\sqrt{1-4 \mathrm{t}+2 \mathrm{t}^{j}+\mathrm{t}^{2 j}}}, \quad h^{[\mathfrak{p}]}(\mathrm{t})=\frac{1+\mathrm{t}^{\mathrm{j}}-\sqrt{1-4 \mathrm{t}+2 \mathrm{t}^{j}+\mathrm{t}^{2 j}}}{2}
$$

Formulae for classes of patterns

- $\mathfrak{p}=(10)^{\mathfrak{j}} 1$

$$
\begin{aligned}
& d^{[p]}(t)=\frac{\sum_{i=0}^{j} t^{i}}{\sqrt{1-2 \sum_{i=1}^{j} t^{i}-3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}, \\
& h^{[p]}(t)=\frac{\sum_{i=0}^{j} t^{i}-\sqrt{1-2 \sum_{i=1}^{j} t^{i}-3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}{2 \sum_{i=0}^{j} t^{i}}
\end{aligned}
$$

- $\mathfrak{p}=(01)^{j} 0$

$$
\begin{aligned}
& \mathrm{d}^{[\mathfrak{p}]}(\mathrm{t})=\frac{\sum_{\mathrm{i}=0}^{j} \mathrm{t}^{i}}{\sqrt{1-2 \sum_{i=1}^{j} \mathrm{t}^{i}-3\left(\sum_{i=1}^{j} \mathrm{t}^{i}\right)^{2}}}, \\
& h^{[\mathfrak{p}]}(\mathrm{t})=\frac{\sum_{\mathrm{i}=0}^{j} \mathrm{t}^{i}-\sqrt{1-2 \sum_{i=1}^{j} t^{i}-3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}{2 \sum_{i=0}^{j-1} t^{i}}
\end{aligned}
$$

A combinatorial interpretation for $\mathfrak{p}=10$

In this case we get the RA $\mathcal{R}^{[10]}=\left(d^{[10]}(t), h^{[10]}(t)\right)$ such that

$$
d^{[10]}(t)=\frac{1}{1-t} \quad \text { and } \quad h^{[10]}(t)=t
$$

so the number $R_{n, 0}^{[10]}$ of words containing n bits 1 and n bits 0 , avoiding pattern $\mathfrak{p}=10$, is $\left[\mathrm{t}^{\mathfrak{n}}\right] \mathrm{d}^{[10]}(\mathrm{t})=1$ for $\mathrm{n} \in \mathbb{N}$.
In terms of lattice paths this corresponds to the fact that there is exactly one valley-shaped path having n steps of both kinds / and \backslash, avoiding $\mathfrak{p}=10$ and terminating at coordinate $(2 n, 0)$ for each $n \in \mathbb{N}$, formally the path $0^{n} 1^{n}$.

Outline

1 Introduction

2 Binary words avoiding patterns

3 Riordan patterns

4 The $|w|_{0} \leq|w|_{1}$ constraint

5 Series developments and closed formulae

The $|\mathcal{w}|_{0} \leq|\mathcal{w}|_{1}$ constraint

- let $|w|_{i}$ be the number of bits i in word w
- enumeration of binary words avoiding a pattern \mathfrak{p}, without the constraint $|w|_{0} \leq|w|_{1}$, gives a rational bivariate generating function for the sequence $F_{n}^{[p]}=\sum_{k=0}^{n} F_{n, k}^{[p]}$
- under the restriction such that words have to have no more bits 0 than bits 1 , then the language is no longer regular and its enumeration becomes more difficult
- using gf $R^{[p]}(x, y)$ and the fundamental theorem of RAs:

$$
\sum_{k=0}^{n} d_{n, k} f_{k}=\left[t^{n}\right] d(t) f(h(t))
$$

we obtain many new algebraic generating functions expressed in terms of the autocorrelation polynomial of \mathfrak{p}

Theorem 2: the case $n_{1}^{[\mathfrak{p}]}-\mathfrak{n}_{0}^{[\mathfrak{p}]}=1$

Recall that

$$
R^{[p]}(t, w)=\sum_{n, k \in \mathbb{N}} R_{n, k}^{[p]} t^{n} w^{k}=\frac{d^{[p]}(t)}{1-w h^{[p]}(t)}
$$

Let $S^{[p]}(t)=\sum_{n \geq 0} S_{n}^{[p]} t^{n}$ be the gf enumerating the set of binary words $\left\{w \in \mathcal{L}^{[p]}:|w|_{0} \leq|w|_{1}\right\}$ according to the number of bits 1

- if $n_{1}^{[p]}=n_{0}^{[p]}+1$:

$$
S^{[p]}(t)=\frac{2 C^{[p]}(t)}{\sqrt{Q(t)}\left(\sqrt{C^{[p]}(t)}+\sqrt{Q(t)}\right)}
$$

where $Q(t)=(1-4 t) C^{[p]}(t)^{2}+4 t^{n_{1}^{[p]}}$

Theorem 2: the case $n_{0}^{[p]}-n_{1}^{[p]}=1$

- if $n_{0}^{[p]}=n_{1}^{[p]}+1$:

$$
S^{[p]}(t)=\frac{2 C^{[p]}(t)\left(C^{[p]}(t)-t^{n_{1}^{[p]}}\right)}{\sqrt{Q(t)}\left(C^{[p]}(t)-2 t^{n_{1}^{[p]}}+\sqrt{Q(t)}\right)}
$$

where $Q(t)=(1-4 t) C^{[p]}(t)^{2}+4 t^{n_{0}^{[p]}} C^{[p]}(t)$

Theorem 2: the case $n_{0}^{[p]}-n_{1}^{[p]}=0$

- if $n_{1}^{[p]}=n_{0}^{[p]}$:

$$
S^{[p]}(t)=\frac{2 C^{[p]}(t)^{2}}{\sqrt{Q(t)}\left(C^{[p]}(t)-t^{t_{0}^{[p]}}+\sqrt{Q(t)}\right)}
$$

where $Q(t)=(1-4 t) C^{[p]}(t)^{2}+2 t^{n_{0}^{[p]}} C^{[p]}(t)+t^{2 n_{0}^{[p]}}$

Proof.

Observe that $S^{[p]}(t)=R^{[p]}(t, 1)$, or, equivalently, that $S_{n}^{[p]}=\sum_{k=0}^{n} R_{n, k}^{[p]}$ and apply the fundamental rule with $f_{k}=1$.

Theorem 3: the case $n_{1}^{[p]}-n_{0}^{[p]}=1$

Let $L^{[p]}(t)=\sum_{n \geq 0} L_{n}^{[p]} t^{n}$ be the gf enumerating the set of binary words $\left\{w \in \mathcal{L}^{[p]}:|w|_{0} \leq|w|_{1}\right\}$ according to the length

- if $n_{1}^{[p]}=n_{0}^{[p]}+1$:

$$
L^{[p]}(t)=\frac{2 t^{[p]}\left(t^{2}\right)^{2}}{\sqrt{Q(t)}\left((2 t-1) C\left(t^{2}\right)+\sqrt{Q(t)}\right)}
$$

where $\mathrm{Q}(\mathrm{t})=\mathrm{C}^{[p]}\left(\mathrm{t}^{2}\right)\left(\left(1-4 \mathrm{t}^{2}\right) \mathrm{C}^{[p]}\left(\mathrm{t}^{2}\right)+4 \mathrm{t}^{2 \mathrm{~m}_{1}^{[p]}}\right)$

Theorem 3: the case $n_{0}^{[p]}-n_{1}^{[p]}=1$

- if $n_{0}^{[p]}=n_{1}^{[p]}+1$:

$$
L^{[p]}(t)=\frac{2 t \sqrt{C^{[p]}\left(t^{2}\right)}\left(t^{2 n_{1}^{[p]}}-C^{[p]}\left(t^{2}\right)\right)}{\sqrt{Q(t)}\left((1-2 t) C^{[p]}\left(t^{2}\right)+B(t)-\sqrt{C^{[p]}\left(t^{2}\right) Q(t)}\right)}
$$

where $Q(t)=\left(1-4 t^{2}\right) C^{[p]}\left(t^{2}\right)+4 t^{2 n_{0}^{[p]}}$ and $B(t)=2 t^{n_{0}^{[p]}}+n_{1}^{[p]}$

Theorem 3: the case $n_{1}^{[p]}-n_{0}^{[p]}=0$

- if $n_{1}^{[p]}=n_{0}^{[p]}$:

$$
L^{[p]}(t)=\frac{2 t C^{[p]}\left(t^{2}\right)^{2}}{\sqrt{Q(t)}\left((2 t-1) C\left(t^{2}\right)-t^{2 n} 0_{0}^{[p]}+\sqrt{Q(t)}\right)}
$$

where $\mathrm{Q}(\mathrm{t})=\left(1-4 \mathrm{t}^{2}\right) \mathrm{C}^{[p]}\left(\mathrm{t}^{2}\right)^{2}+2 \mathrm{t}^{2 n_{0}^{[p]}} \mathrm{C}^{[p]}\left(\mathrm{t}^{2}\right)+\mathrm{t}^{4 \mathrm{n}_{0}^{[p]}}$

Theorem 3: proof

Proof.
Observe that the application of generating function $R^{[p]}(t, w)$ as

$$
R^{[p]}\left(t w, \frac{1}{w}\right)=\sum_{n, k \in \mathbb{N}} R_{n, k}^{[p]} t^{n} w^{n-k}
$$

entails that $\left[t^{r} w^{s}\right] R^{[p]}\left(t w, \frac{1}{w}\right)=R_{r, r-s}^{[p]}$ which is the number of binary words with r bits 1 and s bits 0 . To enumerate according to the length let $\mathrm{t}=w$, therefore

$$
L^{[p]}(t)=\sum_{n \geq 0} L_{n}^{[p]} t^{n}=R^{[p]}\left(t^{2}, \frac{1}{t}\right)
$$

Outline

1 Introduction

2 Binary words avoiding patterns

3 Riordan patterns

4 The $|w|_{0} \leq|w|_{1}$ constraint

5 Series developments and closed formulae

Formulae for classes of patterns

- for $\mathfrak{p}=1^{j+1} 0^{j}$ we have:

$$
S^{[p]}(t)=\frac{2}{\sqrt{Q(t)}(1+\sqrt{Q(t)})}, \quad Q(t)=1-4 t+4 t^{j+1}
$$

- for $\mathfrak{p}=0^{j+1} 1^{j}$ we have:

$$
S^{[p]}(t)=\frac{2\left(1-t^{j}\right)}{\sqrt{Q(t)}\left(1-2 t^{j}+\sqrt{Q(t)}\right)}, \quad Q(t)=1-4 t+4 t^{j+1}
$$

- for $\mathfrak{p}=1^{j} 0^{j}$ and $\mathfrak{p}=0^{j} 1^{j}$ we have:

$$
S^{[p]}(t)=\frac{2}{\sqrt{Q(t)}\left(1-t^{j}+\sqrt{Q(t)}\right)}, \quad Q(t)=1-4 t+2 t^{j}+t^{2 j}
$$

Formulae for classes of patterns

- for $\mathfrak{p}=(10)^{j} 1$ we have:

$$
S^{[\mathfrak{p}]}(t)=\frac{2\left(1-t^{\mathfrak{j}+1}\right)}{1-4 t+3 t^{j+1}+\sqrt{Q(t)}}
$$

where $Q(t)=1-4 t+2 t^{j+1}+4 t^{j+2}-3 t^{2 j+2}$

- for $\mathfrak{p}=(01)^{j} 0$ we have:

$$
S^{[\mathfrak{p}]}(t)=\frac{2\left(1-t^{j}-t^{j+1}+t^{2 j+1}\right)}{\sqrt{Q(t)}\left(1-2 t^{j}+t^{j+1}+\sqrt{Q(t)}\right)}
$$

where $Q(t)=1-4 t+2 t^{j+1}+4 t^{j+2}-3 t^{2 j+2}$

Series development for $S^{\left[1{ }^{j+1} 0^{j]}\right.}(t)$

j / n	0	1	2	3	4	5	6	7	8	9	10	11
0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	3	7	15	31	63	127	255	511	1023	2047	4095
2	1	3	10	32	106	357	1222	4230	14770	51918	183472	651191
3	1	3	10	35	123	442	1611	5931	22010	82187	308427	1162218
4	1	3	10	35	126	459	1696	6330	23806	90068	342430	1307138
5	1	3	10	35	126	462	1713	6415	24205	91874	350406	1341782
6	1	3	10	35	126	462	1716	6432	24290	92273	352212	1349768
7	1	3	10	35	126	462	1716	6435	24307	92358	352611	1351574
8	1	3	10	35	126	462	1716	6435	24310	92375	352696	1351973
	$\left[\mathrm{t}^{3}\right] \mathrm{S}^{[110]}(\mathrm{t})=\mid\{111,0111,1011,00111,01011,10011,10101,000111$,											
0	$001011,010011,010101,100011,100101,101001,101010\} \mid=15$											

Table: Some series developments for $S^{\left[1^{j+1} 0^{j}\right]}(t)$ and the set of words with $n=3$ bits 1 , avoiding pattern $\mathfrak{p}=110$, so $\mathfrak{j}=1$ in the family; moreover, for $\mathfrak{j}=1$ the sequence corresponds to $A 000225$, for $\mathfrak{j}=2$ the sequence corresponds to A261058.

formulae for classes of patterns

- for $\mathfrak{p}=1^{\mathfrak{j}+1} 0^{j}$ we have:

$$
L^{[\mathfrak{p}]}(t)=\frac{2 t}{\sqrt{Q(t)}(2 t-1+\sqrt{Q(t)})}, \quad Q(t)=1-4 t^{2}+4 t^{2(j+1)}
$$

- for $\mathfrak{p}=0^{j+1} 1^{j}$ we have:

$$
L^{[\mathfrak{p}]}(t)=\frac{2 t\left(t^{2 j}-1\right)}{\sqrt{Q(t)}\left(1-2 t+2 t^{2 j+1}-\sqrt{Q(t)}\right)}, \quad Q(t)=1-4 t^{2}+4 t^{2(j+1)}
$$

- for $\mathfrak{p}=1^{\mathfrak{j}} 0^{j}$ and $\mathfrak{p}=0^{j} 1^{j}$ we have:

$$
L^{[p]}(t)=\frac{2 t}{\sqrt{Q(t)}\left(-1+2 t-t^{2 j}+\sqrt{Q(t)}\right)}, \quad Q(t)=1-4 t^{2}+2 t^{2 j}+t^{4 j}
$$

formulae for classes of patterns

- for $\mathfrak{p}=(10)^{j} 1$ we have:

$$
L^{[p]}(t)=\frac{2 t\left(t^{2 j+2}-1\right)}{1-4 t^{2}+3 t^{2 j+2}+(2 t-1) \sqrt{Q(t)}}
$$

where $Q(t)=1-4 t^{2}+2 t^{2 j+2}+4 t^{2 j+4}-3 t^{4 j+4}$

- for $\mathfrak{p}=(01)^{j} 0$ we have:

$$
L^{[p]}(t)=\frac{2 t\left(t^{2 j+2}-1\right)\left(t^{2 j}-1\right)}{\sqrt{Q(t)}\left(t^{2 j+2}-2 t^{2 j+1}+2 t-1+\sqrt{Q(t)}\right)}
$$

where $Q(t)=1-4 t^{2}+2 t^{2 j+2}+4 t^{2 j+4}-3 t^{4 j+4}$

Series development for $L^{\left[i{ }^{j+1} 0^{j]}\right]}(t)$

$\mathfrak{j} / \mathrm{n}$	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	3	3	7	7	15	15	31	31	63	63	127	127	255
2	1	1	3	4	11	15	38	55	135	201	483	736	1742	2699	6313
3	1	1	3	4	11	16	42	63	159	247	610	969	2354	3802	9117
4	1	1	3	4	11	16	42	64	163	255	634	1015	2482	4041	9752
5	1	1	3	4	11	16	42	64	163	256	638	1023	2506	4087	9880
6	1	1	3	4	11	16	42	64	163	256	638	1024	2510	4095	9904
7	1	1	3	4	11	16	42	64	163	256	638	1024	2510	4096	9908

Table: Some series developments for $L^{\left[j{ }^{j+1} 0^{j}\right]}(t)$; moreover, for $j=1$ the sequence corresponds to A052551.

Closed formulae for particular cases

When the parameter \mathfrak{j} for a pattern \mathfrak{p} assumes values 0 and 1 it is possible to find closed formulae for coefficients $S_{n}^{[p]}$ and $L_{n}^{[p]}$; moreover, in a recent submitted paper we give combinatorial interpretations, in terms of inversions in words and boxes occupancy, too.
$S_{n}^{[p]}$

j / \mathfrak{p}	$1^{j+1} 0^{j}$	$0^{j+1} 1^{j}$	$1^{j} 0^{j}$
0	$\llbracket n=0 \rrbracket$	1	$\binom{2 n+1}{n}$
1	$2^{n+1}-1$	$(n+2) 2^{n-1}$	$n+1$

Closed formulae for particular cases

$$
\begin{aligned}
& L_{2 m}^{[p]} \\
& L_{2 m+1}^{[p]}
\end{aligned}
$$

Summary

Key points

- split $F(t)$ in $F^{[p]}(x, y)$ to account for bits 1 and 0
- $R^{[p]}$ and $R^{[\bar{p}]}$ are both $R A \leftrightarrow \mathfrak{p}$ is a Riordan pattern.
- requiring $|w|_{0} \leq|w|_{1}$ entails

$$
\begin{aligned}
& S^{[\mathfrak{p}]}(\mathrm{t})=\mathrm{R}^{[\mathfrak{p}]}(\mathrm{t}, 1) \rightarrow\left[\mathrm{t}^{\mathrm{n}]} \mathrm{S}^{[\mathfrak{p}]}(\mathrm{t})=\left|\left\{w \in \mathcal{L}^{[\mathfrak{p}]}: \begin{array}{l}
|w|_{1}=\mathrm{n} \\
|w|_{0} \leq|w|_{1}
\end{array}\right\}\right|\right. \\
& L^{[\mathfrak{p}]}(\mathrm{t})=\mathrm{R}^{[\mathfrak{p}]}\left(\mathrm{t}^{2}, \frac{1}{\mathrm{t}}\right) \rightarrow\left[\mathrm{t}^{\mathrm{n}] \mathrm{L}^{[\mathfrak{p}]}(\mathrm{t})=\left|\left\{w \in \mathcal{L}^{[p]}: \begin{array}{l}
|w|=\mathrm{n} \\
|w|_{0} \leq|w|_{1}
\end{array}\right\}\right|}\right.
\end{aligned}
$$

Outlook

- provide combinatorial interpretations for both pattern classes $(10)^{j} 1$ and $(01)^{j} 0$, at least for $j \in\{0,1\}$
- conjecture: when $j>1$ in pattern classes it seems that $R^{[p]}$ is a binomial transformation
- build the Riordan graph for both RAs $R^{[p]}$ and $R^{[\mathfrak{p}]}$ to study the meaning of pattern avoidance at graph level

고맙습니다

