Scalable Data-driven PageRank: Algorithms, System Issues, and Lessons Learned

Joyce Jiyoung Whang
Dept. of Computer Science & Engineering
SKKU

February 24, 2017

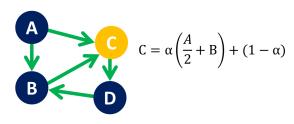
Parallel Graph Mining Algorithms

- Work Activation
 - Topology-driven
 - Data-driven
- Data Access Pattern
 - Pull (Read)
 - Pull-Push (Read-Write)
 - Push (Write)
- Scheduling
 - FIFO/LIFO
 - Task-specific priority scheduling

Scalable Data-driven PageRank¹

- PageRank: the importance of web pages
 - ullet Given a graph $G=(\mathcal{V},\mathcal{E})$, a PageRank vector ${f x}$
 - S_v : the set of incoming neighbors of node v
 - \mathcal{T}_{v} : the set of outgoing neighbors of node v

$$x_{v}^{(k+1)} = \alpha \sum_{w \in \mathcal{S}_{v}} \frac{x_{w}^{(k)}}{|\mathcal{T}_{w}|} + (1 - \alpha)$$



¹ J. Whang, A. Lenharth, I. Dhillon, and K. Pingali. Scalable Data-driven PageRank: Algorithms, System Issues, and Lessons Learned. *Euro-Par.* 2015.

Topology-driven PageRank

- Power Method: processing all the nodes at each iteration
 - Work activation: topology-driven
 - Data access pattern: pull (read-mostly access pattern)
 - Scheduling: unordered

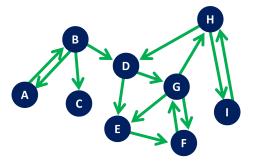


Figure 1: Topology-driven PageRank updates the PageRank values of all the nodes at each iteration.

Topology-driven to Data-driven

- Data-driven PageRank
 - Dynamically maintaining a working set
 - Only compute values which might change
 - Order matters
- On a Twitter graph (51 million nodes, 3 billion edges)
 - Topology-driven: 4.3 billion PageRank updates
 - Data-driven (basic): 1.6 billion PageRank updates
 - Data-driven (best): 0.4 billion PageRank updates

Data-driven PageRank

- Data-driven PageRank
 - Initialize the worklist: the entire vertex set.
 - Pick a node from the worklist, and compute the nodes PageRank.
 - Add its outgoing neighbors to the worklist.

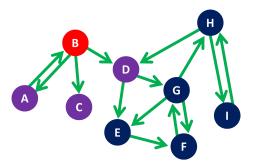


Figure 2: When B's PageRank is updated, A, C, and D should be updated.

Data-driven PageRank

- Data-driven PageRank
 - Initialize the worklist: the entire vertex set.
 - Pick a node from the worklist, and compute the nodes PageRank.
 - Add its outgoing neighbors to the worklist.

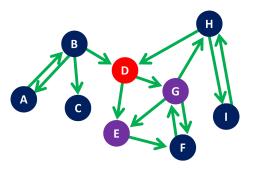


Figure 3: When D's PageRank is updated, E and G should be updated.

Convergence of Data-driven PageRank

The PageRank \mathbf{x} is computed as follows:

$$\mathbf{x} = \alpha \mathbf{P}^T \mathbf{x} + (1 - \alpha) \mathbf{e}$$

where P is a row-stochastic matrix ($P = D^{-1}A$) and e is the vector of all ones. This is the linear system:

$$(\mathbf{I} - \alpha \mathbf{P}^T)\mathbf{x} = (1 - \alpha)\mathbf{e}.$$

and the residual:

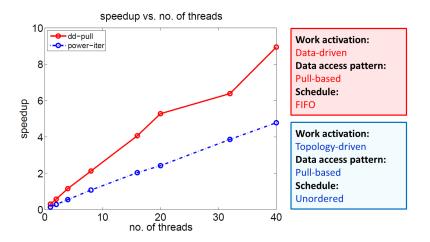
$$\mathbf{r} = (1 - \alpha)\mathbf{e} - (\mathbf{I} - \alpha \mathbf{P}^T)\mathbf{x} = \alpha \mathbf{P}^T\mathbf{x} + (1 - \alpha)\mathbf{e} - \mathbf{x}.$$

When the j-th node is processed, the residual is decreased by $\mathbf{r}_{j}^{(k)}(1-\alpha)$.

$$\mathbf{e}^{\mathsf{T}}\mathbf{r}^{(k+1)} = \mathbf{e}^{\mathsf{T}}\mathbf{r}^{(k)} - \mathbf{r}_{i}^{(k)}(1-\alpha).$$

Topology-driven vs. Data-driven PageRank

• Speedup against the best single-threaded algorithm (Twitter graph)



Pull to Pull-Push

- The basic pull-based data-driven PageRank
 - Each node adds all the out-neighbors to the worklist.
- Think PageRank as a linear system
 - Each node maintains its residual value.
 - Stopping criteria: the maximum residual < threshold
- Pull-Push PageRank
 - Residual computation: Read/write operations on the neighbors
 - If an outgoing-neighbor's residual < threshold, then, do not add the neighbor to the worklist.
 - ⇒ Filter out some work in the worklist.

Pull-Push-based PageRank

- Pull-Push-based PageRank
 - Pulls (reads) its neighbors' values.
 - Pushes (updates) its neighbors' values.

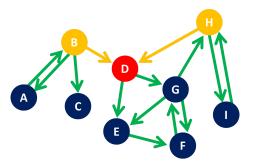


Figure 4: D's PageRank is updated by reading B's and H's PageRank.

Pull-Push-based PageRank

- Pull-Push-based PageRank
 - Stopping criteria: repeat until the residual is less than a threshold.
 - X's PageRank → Adds residuals to X's outgoing neighbors.

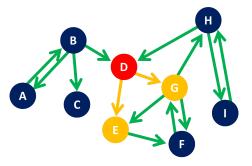


Figure 5: If D's PageRank is updated, it adds the residuals to E and G.

Pull-Push-based PageRank

- Pull-Push-based PageRank
 - ullet X's residual is less than the threshold o do not add it to the worklist.
 - Filter out work in the worklist.

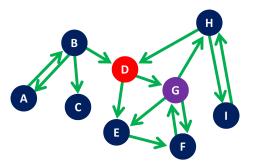
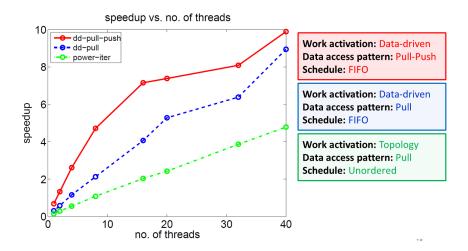


Figure 6: If E's residual is less than a threshold, it is not added to the worklist.

Pull-Push vs. Pull Data-driven vs. Topology-driven

Speedup against the best single-threaded algorithm (Twitter graph)



Pull-Push to Push

• Exploiting the problem structure of PageRank

$$x_v^{(k+1)} = x_v^{(k)} + r_v^{(k)}$$

(new PageRank = current PageRank + current residual)

- Push-based PageRank
 - From pull-push PageRank, we can remove the read operations on the incoming neighbors.
 - ⇒ Avoid extra work (the pull part)

Push-based PageRank

- Push-based PageRank
 - An active node updates its own value.
 - Pushes (updates) its neighbors' values.

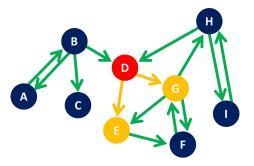
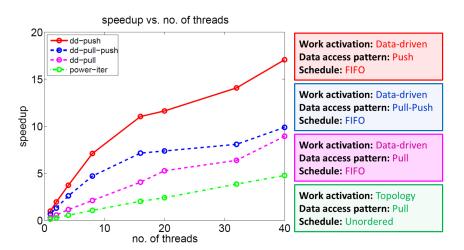


Figure 7: If D's PageRank is updated, it pushes the residuals to E and G.

Pull vs. Pull-Push vs. Push PageRank

Speedup against the best single-threaded algorithm (Twitter graph)

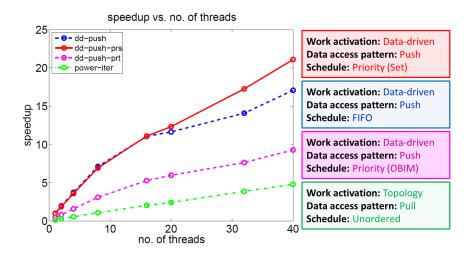


Scheduling

- Order of visiting nodes affects performance.
 - The decrease of the total residual is proportional to the node's residual.
 - \Rightarrow Define the priority as the residual per unit work.
- Asynchronous, Autonomous Scheduler
 - OBIM (ordered-by-integer-metric) priority scheduler
 - Each thread uses limited communication to estimate the priority of the high priority work.
 - Potentially generating duplicate tasks in the scheduler
- Bulk Synchronous Scheduler
 - Set-semantics: there are no duplicate work items in the worklist.
 - Periodically, compute the distribution of priorities.
 - Use the distribution to define a threshold for the priority.
 - Process a subset of nodes whose priority is greater than the threshold.

Data-driven PageRank with Different Scheduling

Speedup against the best single-threaded algorithm (Twitter graph)

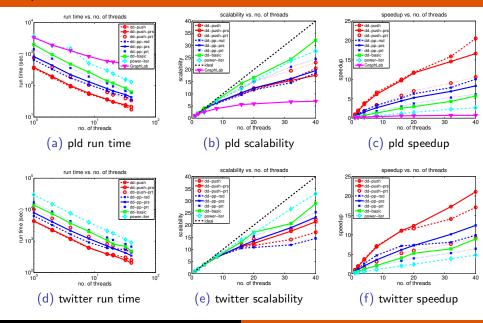


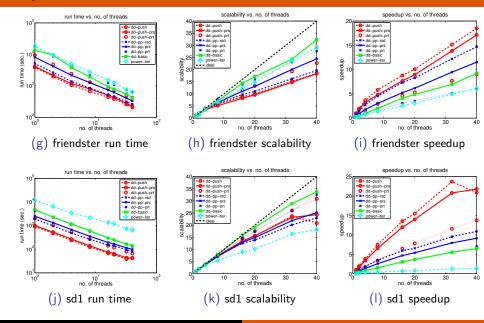
	# nodes # edges		CSR size
pld	39M	623M	2.7G
sd1	83M	1,937M	7.9G
Twitter	51M	3,228M	13G
Friendster	67M	3,623M	14G

Table 1: Input Graphs

Algorithm	Activation	Access	Schedule
dd-push	Data-driven	Push	FIFOs w/ Stealing
dd-push-prs	Data-driven	Push	Bulk-sync Priority
dd-push-prt	Data-driven	Push	Async Priority
dd-pp-rsd	Data-driven	Pull-Push	FIFOs w/ Stealing
dd-pp-prs	Data-driven	Pull-Push	Bulk-sync Priority
dd-pp-prt	Data-driven	Pull-Push	Async Priority
dd-basic	Data-driven	Pull	FIFOs w/ Stealing
tp	Topology	Pull	Load Balancer

Table 2: Summary of algorithm design choices





- Runtime of different PageRank implementations on pld dataset
 - Using 40 threads, the fastest GraphLabs method takes 478 seconds whereas our push-based PageRank takes 17 seconds.

System	Method	Threads					
		40	32	16	8	1	
GraphLab	sync	478 secs.	496 secs.	594 secs.	845 secs.	3,332 secs.	
	async-fifo	500 secs.	580 secs.	618 secs.	898 secs.	5,194 secs.	
	async-qfifo	788 secs.	804 secs.	970 secs.	1,292 secs.	5,098 secs.	
	async-sweep	4,186 secs.	5,162 secs.	9,156 secs.	> 4 hrs.	> 4 hrs.	
	async-prt	> 4 hrs.					
Galois	power-iter	132 secs.	155 secs.	299 secs.	510 secs.	3,650 secs.	
	dd-basic	62 secs.	82 secs.	140 secs.	269 secs.	2,004 secs.	
	dd-pp-prt	58 secs.	67 secs.	118 secs.	193 secs.	1,415 secs.	
	dd-push	17 secs.	22 secs.	36 secs.	53 secs.	355 secs.	

Summary

- Three key algorithm design axes
 - Work activation
 - Data access pattern
 - Scheduling
- Data-driven, push-based PageRank algorithms achieve a significantly superior scalability than standard PageRank implementations.

Big Data Lab

Email: jjwhang@skku.edu

Homepage: http://bigdata.cs.skku.edu/

• Tel: 031-299-4396

• Office: Engineering Building 2, #27326

• Lab: Engineering Building 2, #26315B