Joyce Jiyoung Whang
Dept. of Computer Science & Engineering
SKKU

February 24, 2017

Joyce Jiyoung Whang

@ Work Activation

o Topology-driven
o Data-driven

@ Data Access Pattern

o Pull (Read)
o Pull-Push (Read-Write)
o Push (Write)

@ Scheduling

e FIFO/LIFO
e Task-specific priority scheduling

Joyce Jiyoung Whang

@ PageRank: the importance of web pages
o Given a graph G = (V, &), a PageRank vector x
o S,: the set of incoming neighbors of node v
e 7,: the set of outgoing neighbors of node v

(k+1) Z |7’ | 1 _ a,)

weS,y

A
C=a<E+B)+(1—(x)

.4

0

1J. Whang, A. Lenharth, I. Dhillon, and K. Pingali. Scalable Data-driven PageRank: Algorithms, System lIssues, and Lessons
Learned. Euro-Par, 2015.

Joyce Jiyoung Whang

@ Power Method: processing all the nodes at each iteration
e Work activation: topology-driven
o Data access pattern: pull (read-mostly access pattern)
e Scheduling: unordered

Ao

Figure 1: Topology-driven PageRank updates the PageRank values of all the nodes
at each iteration.

Joyce Jiyoung Whang

@ Data-driven PageRank

e Dynamically maintaining a working set
e Only compute values which might change
e Order matters

@ On a Twitter graph (51 million nodes, 3 billion edges)

e Topology-driven: 4.3 billion PageRank updates
o Data-driven (basic): 1.6 billion PageRank updates
o Data-driven (best): 0.4 billion PageRank updates

Joyce Jiyoung Whang

@ Data-driven PageRank
o Initialize the worklist: the entire vertex set.
e Pick a node from the worklist, and compute the nodes PageRank.
e Add its outgoing neighbors to the worklist.

A

Figure 2: When B's PageRank is updated, A, C, and D should be updated.

Joyce Jiyoung Whang

@ Data-driven PageRank
o Initialize the worklist: the entire vertex set.
e Pick a node from the worklist, and compute the nodes PageRank.
e Add its outgoing neighbors to the worklist.

A

Figure 3: When D’s PageRank is updated, E and G should be updated.

Joyce Jiyoung Whang

The PageRank x is computed as follows:
x=aPTx+(1-a)e

where P is a row-stochastic matrix (P = D71A) and e is the vector of all
ones. This is the linear system:

(I —aPT)x = (1-a)e.
and the residual:
r=(1-a)e—(I—aPT)x=aP x+ (1 -a)e—x.
When the j-th node is processed, the residual is decreased by rJ(.k)(l —a).

e r(k1) = eTp(k) rj(.k)(l —a).

Joyce Jiyoung Whang

@ Speedup against the best single-threaded algorithm (Twitter graph)

speedup vs. no. of threads

10 T ;
Work activation:
'=0- power-iter’ D)
Data-driven
8r 1 Data access pattern:
Pull-based
Schedule:
g 6f 1 |FIFO
o
3)
& 4l 1| Work activation:
Topology-driven
Data access pattern:
2 4 Pull-based
Schedule:
y Unordered
0 L L L
0 10 20 30 40

no. of threads

Joyce Jiyoung Whang

@ The basic pull-based data-driven PageRank
e Each node adds all the out-neighbors to the worklist.

@ Think PageRank as a linear system

e Each node maintains its residual value.
e Stopping criteria: the maximum residual < threshold

@ Pull-Push PageRank
e Residual computation:
Read/write operations on the neighbors
o If an outgoing-neighbor’s residual < threshold,
then, do not add the neighbor to the worklist.
= Filter out some work in the worklist.

Joyce Jiyoung Whang

@ Pull-Push-based PageRank

o Pulls (reads) its neighbors’ values.
o Pushes (updates) its neighbors' values.

Figure 4. D’s PageRank is updated by reading B's and H’s PageRank.

Joyce Jiyoung Whang

@ Pull-Push-based PageRank

o Stopping criteria: repeat until the residual is less than a threshold.
o X's PageRank — Adds residuals to X's outgoing neighbors.

o</
%"

-~

Figure 5: If D's PageRank is updated, it adds the residuals to E and G.

Joyce Jiyoung Whang

@ Pull-Push-based PageRank

o X's residual is less than the threshold — do not add it to the worklist.
o Filter out work in the worklist.

A

Figure 6: If E's residual is less than a threshold, it is not added to the worklist.

Joyce Jiyoung Whang

@ Speedup against the best single-threaded algorithm (Twitter graph)

speedup vs. no. of threads

10 . T .
.'Zjﬂ:gﬂ::"’”s" o | Workactivation: Data-driven
=0~ power-iter S Data access pattern: Pull-Push

.
8 .»" 1 | schedule: FIFO
4
4
4
Lo Work activation: Data-driven
g 6f P 1 | Data access pattern: Pull
B3 o Schedule: FIFO
o} R)
Q. ”, PR
@ 4r .2 L-e7 1 | Work activation: Topology
Lo’ Pl Data access pattern: Pull
e -1 Schedule: Unordered
2r R .- 1
o o
"
e | |
0 10 20 30 40

no. of threads

Joyce Jiyoung Whang

@ Exploiting the problem structure of PageRank
KD (R (R
v - v v

(new PageRank = current PageRank + current residual)

@ Push-based PageRank

e From pull-push PageRank, we can remove the read operations on the
incoming neighbors.
= Avoid extra work (the pull part)

Joyce Jiyoung Whang

@ Push-based PageRank

e An active node updates its own value.
o Pushes (updates) its neighbors' values.

o</
A

-~

Figure 7: If D's PageRank is updated, it pushes the residuals to E and G.

Joyce Jiyoung Whang

@ Speedup against the best single-threaded algorithm (Twitter graph)

20

Joyce Jiyoung Whang

speedup vs. no. of threads

=—©—dd-push
= ©= dd-pull-push
= ©=dd-pull

=0= power-iter

T

Work activation: Data-driven
Data access pattern: Push
Schedule: FIFO

Work activation: Data-driven
Data access pattern: Pull-Push
Schedule: FIFO

Work activation: Data-driven
Data access pattern: Pull
Schedule: FIFO

20
no. of threads

Work activation: Topology
Data access pattern: Pull
Schedule: Unordered

@ Order of visiting nodes affects performance.

e The decrease of the total residual is proportional to the node’s residual.
= Define the priority as the residual per unit work.

@ Asynchronous, Autonomous Scheduler

o OBIM (ordered-by-integer-metric) priority scheduler

e Each thread uses limited communication to estimate the priority of the
high priority work.

e Potentially generating duplicate tasks in the scheduler

@ Bulk Synchronous Scheduler

e Set-semantics: there are no duplicate work items in the worklist.

e Periodically, compute the distribution of priorities.

o Use the distribution to define a threshold for the priority.

o Process a subset of nodes whose priority is greater than the threshold.

Joyce Jiyoung Whang

@ Speedup against the best single-threaded algorithm (Twitter graph)

25

speedup vs. no. of threads

Joyce Jiyoung Whang

=©=dd-push
== dd-push-prs
= ©= dd-push-prt
=0~ power-iter

T

T

Work activation: Data-driven
Data access pattern: Push
Schedule: Priority (Set)

Work activation: Data-driven
Data access pattern: Push
Schedule: FIFO

Work activation: Data-driven
Data access pattern: Push
Schedule: Priority (OBIM)

20
no. of threads

Work activation: Topology
Data access pattern: Pull
Schedule: Unordered

nodes # edges CSR size

pld 39M 623M 2.7G
sdl 83M 1,937M 7.9G
Twitter 51M 3,228M 13G
Friendster 67TM 3,623M 14G

Table 1: Input Graphs

Algorithm Activation Access Schedule
dd-push Data-driven Push FIFOs w/ Stealing
dd-push-prs Data-driven Push Bulk-sync Priority
dd-push-prt Data-driven Push Async Priority

dd-pp-rsd Data-driven Pull-Push FIFOs w/ Stealing
dd-pp-prs Data-driven Pull-Push Bulk-sync Priority

dd-pp-prt Data-driven Pull-Push Async Priority
dd-basic Data-driven Pull FIFOs w/ Stealing
tp Topology Pull Load Balancer

Table 2: Summary of algorithm design choices

Joyce Jiyoung Whang

run time (sec.)

run time (sec.)

run time vs. no. of threads

scalability vs. no. of threads

speedup vs. no. of threads

no. of threads

(d) twitter run time

20
no. of threads

(e) twitter scalability

10 ~@- dd_push ::: ggfpush ¢ -0 dd-push
o o] 35)1.0 0 di-push-pr)
- = Gd-pp-rsa 20{ - #= dd-pp-rsd
== dd-pp-prs 30 == d-pp-prs.
dd-pp-prt 3 dd-pp-prt .
- dd-basic 25 - dd-basic
poweriter B 215 poverier
£ hlab
¥~ GraphLab 32 3 |G
g 2
¥ @45 %10
10
10
5
5
105 ; : 0 0 ¥ A
10 10 10 0 10 20 40 0 10 20 30 40
no. of threads no. of threads no. of threads
(a) pld run time (b) pld scalability (c) pld speedup
run time vs. no. of threads scalability vs. no. of threads speedup vs. no. of threads
10° 4 5
=0 dd_push @~ dd-push -~ dd-push
— =6~ dd-push-prs| ~e-Gd-push
'3'::,‘;:2:,;’: 35010 dd-push-prt O dd-push-prt
- = 60-pp-rsd = %= dd-pp-rsd 20/ %= dd-pp-rsd
. G poprs 30(==ddpp-prs s
1% dd-pp-prt < dd-pp-prt *ddpp-prt
10 - dd-basic 25| 5 cd-basic dd-basic
power-iter z power-iter 2 15[-0 power-iter
3 = = =ideal 3
8 2
K 8
| 3 15| @10
10
10
5
5
107 -
10° 10' 10°) 40 % 10 40

20
no. of threads

() twitter speedup

yce Jiyoung Whan

run time (sec.)

run time (sec.)

run time vs. no. of threads

scalability vs. no. of threads

speedup vs. no. of threads

no. of threads

(j) sd1 run time

20
no. of threads

(k) sd1 scalability

10
o =©- do-push . - dapush
dd-push . q
push- -8~ dd-push-prs =@~ dd-push-prs .
'3'33,{:5::,;: 3510 dd-push-prt 0 dd-push-pr|
= Gdpporsd sd - = dd-pp-rsd
i == dd—pp-prs g PP D: 15 -:-::fpwv:‘s .
I — n deept 25| bocte Rl -
power-ter z power-iter I power-iter
§ = = = ideal .§ o
s 2
3 @ 45 8
10
10 5
5
10° @
10° 10' 10° o 10 20 40 o 10 20 30 40
no. of threads no. of threads no. of threads
(g) friendster run time (h) friendster scalability (i) friendster speedup
run time vs. no. of threads scalability vs. no. of threads speedup vs. no. of threads
10° 4 . 5
=0 oy ~©- dd-push R ~©- ddpush
8- dd-push 35| -8 dd-push-prs . ~©- dd-push .
O dd-push-pr .
0 ff = %= dd-pp-rsd .
30 —=dd-pp-prs 8
%1 dd-pp-prt
25 =4~ dd-basic
E 9 15[0 powor-ir
5 3
g
8
845 @10
10
5
5
105 T 2 0 0 BP0 =4
10f 10 10 0 40 0 10 40

20
no. of threads

(1) sd1 speedup

yce Jiyoung Whan

@ Runtime of different PageRank implementations on pld dataset

o Using 40 threads, the fastest GraphLabs method takes 478 seconds
whereas our push-based PageRank takes 17 seconds.

System Method Threads
40 32 16 8 1

sync 478 secs. 496 secs. 594 secs. 845 secs. 3,332 secs.
async-fifo 500 secs. 580 secs. 618 secs. 898 secs. 5,194 secs.

GraphLab async-gfifo 788 secs. 804 secs. 970 secs. 1,292 secs. 5,098 secs.
async-sweep 4,186 secs. 5,162 secs. 9,156 secs. > 4 hrs. > 4 hrs.
async-prt > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs.
power-iter 132 secs. 155 secs. 299 secs. 510 secs. 3,650 secs.

Galois dd-basic 62 secs. 82 secs. 140 secs. 269 secs. 2,004 secs.
dd-pp-prt 58 secs. 67 secs. 118 secs. 193 secs. 1,415 secs.
dd-push 17 secs. 22 secs. 36 secs. 53 secs. 355 secs.

Joyce Jiyoung Whang

@ Three key algorithm design axes

e Work activation
e Data access pattern
e Scheduling

@ Data-driven, push-based PageRank algorithms achieve a significantly
superior scalability than standard PageRank implementations.

Joyce Jiyoung Whang

Email: jjwhang@skku.edu

Homepage: http://bigdata.cs.skku.edu/
Tel: 031-299-4396

Office: Engineering Building 2, #27326

Lab: Engineering Building 2, #26315B

Joyce Jiyoung Whang

http://bigdata.cs.skku.edu/

