
Scalable Data-driven PageRank:
Algorithms, System Issues, and Lessons Learned

Joyce Jiyoung Whang
Dept. of Computer Science & Engineering

SKKU

February 24, 2017

Joyce Jiyoung Whang

Parallel Graph Mining Algorithms

Work Activation

Topology-driven
Data-driven

Data Access Pattern

Pull (Read)
Pull-Push (Read-Write)
Push (Write)

Scheduling

FIFO/LIFO
Task-specific priority scheduling

Joyce Jiyoung Whang

Scalable Data-driven PageRank1

PageRank: the importance of web pages
Given a graph G = (V, E), a PageRank vector x
Sv : the set of incoming neighbors of node v
Tv : the set of outgoing neighbors of node v

x
(k+1)
v = α

∑
w∈Sv

x
(k)
w

|Tw |
+ (1− α)

1
J. Whang, A. Lenharth, I. Dhillon, and K. Pingali. Scalable Data-driven PageRank: Algorithms, System Issues, and Lessons

Learned. Euro-Par, 2015.

Joyce Jiyoung Whang

Topology-driven PageRank

Power Method: processing all the nodes at each iteration
Work activation: topology-driven
Data access pattern: pull (read-mostly access pattern)
Scheduling: unordered

Figure 1: Topology-driven PageRank updates the PageRank values of all the nodes
at each iteration.

Joyce Jiyoung Whang

Topology-driven to Data-driven

Data-driven PageRank

Dynamically maintaining a working set
Only compute values which might change
Order matters

On a Twitter graph (51 million nodes, 3 billion edges)

Topology-driven: 4.3 billion PageRank updates
Data-driven (basic): 1.6 billion PageRank updates
Data-driven (best): 0.4 billion PageRank updates

Joyce Jiyoung Whang

Data-driven PageRank

Data-driven PageRank
Initialize the worklist: the entire vertex set.
Pick a node from the worklist, and compute the nodes PageRank.
Add its outgoing neighbors to the worklist.

Figure 2: When B’s PageRank is updated, A, C, and D should be updated.

Joyce Jiyoung Whang

Data-driven PageRank

Data-driven PageRank
Initialize the worklist: the entire vertex set.
Pick a node from the worklist, and compute the nodes PageRank.
Add its outgoing neighbors to the worklist.

Figure 3: When D’s PageRank is updated, E and G should be updated.

Joyce Jiyoung Whang

Convergence of Data-driven PageRank

The PageRank x is computed as follows:

x = αPTx + (1− α)e

where P is a row-stochastic matrix (P = D−1A) and e is the vector of all
ones. This is the linear system:

(I − αPT)x = (1− α)e.

and the residual:

r = (1− α)e− (I − αPT)x = αPTx + (1− α)e− x.

When the j-th node is processed, the residual is decreased by r
(k)
j (1− α).

eT r(k+1) = eT r(k) − r
(k)
j (1− α).

Joyce Jiyoung Whang

Topology-driven vs. Data-driven PageRank

Speedup against the best single-threaded algorithm (Twitter graph)

Joyce Jiyoung Whang

Pull to Pull-Push

The basic pull-based data-driven PageRank

Each node adds all the out-neighbors to the worklist.

Think PageRank as a linear system

Each node maintains its residual value.
Stopping criteria: the maximum residual < threshold

Pull-Push PageRank

Residual computation:
Read/write operations on the neighbors
If an outgoing-neighbor’s residual < threshold,
then, do not add the neighbor to the worklist.
⇒ Filter out some work in the worklist.

Joyce Jiyoung Whang

Pull-Push-based PageRank

Pull-Push-based PageRank

Pulls (reads) its neighbors’ values.
Pushes (updates) its neighbors’ values.

Figure 4: D’s PageRank is updated by reading B’s and H’s PageRank.

Joyce Jiyoung Whang

Pull-Push-based PageRank

Pull-Push-based PageRank

Stopping criteria: repeat until the residual is less than a threshold.
X’s PageRank → Adds residuals to X’s outgoing neighbors.

Figure 5: If D’s PageRank is updated, it adds the residuals to E and G.

Joyce Jiyoung Whang

Pull-Push-based PageRank

Pull-Push-based PageRank

X’s residual is less than the threshold → do not add it to the worklist.
Filter out work in the worklist.

Figure 6: If E’s residual is less than a threshold, it is not added to the worklist.

Joyce Jiyoung Whang

Pull-Push vs. Pull Data-driven vs. Topology-driven

Speedup against the best single-threaded algorithm (Twitter graph)

Joyce Jiyoung Whang

Pull-Push to Push

Exploiting the problem structure of PageRank

x
(k+1)
v = x

(k)
v + r

(k)
v

(new PageRank = current PageRank + current residual)

Push-based PageRank

From pull-push PageRank, we can remove the read operations on the
incoming neighbors.
⇒ Avoid extra work (the pull part)

Joyce Jiyoung Whang

Push-based PageRank

Push-based PageRank

An active node updates its own value.
Pushes (updates) its neighbors’ values.

Figure 7: If D’s PageRank is updated, it pushes the residuals to E and G.

Joyce Jiyoung Whang

Pull vs. Pull-Push vs. Push PageRank

Speedup against the best single-threaded algorithm (Twitter graph)

Joyce Jiyoung Whang

Scheduling

Order of visiting nodes affects performance.

The decrease of the total residual is proportional to the node’s residual.
⇒ Define the priority as the residual per unit work.

Asynchronous, Autonomous Scheduler

OBIM (ordered-by-integer-metric) priority scheduler
Each thread uses limited communication to estimate the priority of the
high priority work.
Potentially generating duplicate tasks in the scheduler

Bulk Synchronous Scheduler

Set-semantics: there are no duplicate work items in the worklist.
Periodically, compute the distribution of priorities.
Use the distribution to define a threshold for the priority.
Process a subset of nodes whose priority is greater than the threshold.

Joyce Jiyoung Whang

Data-driven PageRank with Different Scheduling

Speedup against the best single-threaded algorithm (Twitter graph)

Joyce Jiyoung Whang

Experiments

nodes # edges CSR size
pld 39M 623M 2.7G
sd1 83M 1,937M 7.9G
Twitter 51M 3,228M 13G
Friendster 67M 3,623M 14G

Table 1: Input Graphs

Algorithm Activation Access Schedule
dd-push Data-driven Push FIFOs w/ Stealing
dd-push-prs Data-driven Push Bulk-sync Priority
dd-push-prt Data-driven Push Async Priority
dd-pp-rsd Data-driven Pull-Push FIFOs w/ Stealing
dd-pp-prs Data-driven Pull-Push Bulk-sync Priority
dd-pp-prt Data-driven Pull-Push Async Priority
dd-basic Data-driven Pull FIFOs w/ Stealing
tp Topology Pull Load Balancer

Table 2: Summary of algorithm design choices

Joyce Jiyoung Whang

Experiments

10
0

10
1

10
2

10
1

10
2

10
3

10
4

no. of threads

ru
n
 t
im

e
 (

s
e
c
.)

run time vs. no. of threads

dd−push
dd−push−prs

dd−push−prt
dd−pp−rsd

dd−pp−prs

dd−pp−prt
dd−basic

power−iter
GraphLab

(a) pld run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

s
c
a

la
b

ili
ty

scalability vs. no. of threads

dd−push
dd−push−prs

dd−push−prt
dd−pp−rsd

dd−pp−prs
dd−pp−prt

dd−basic
power−iter

ideal
GraphLab

(b) pld scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

s
p

e
e

d
u

p

speedup vs. no. of threads

dd−push
dd−push−prs

dd−push−prt
dd−pp−rsd

dd−pp−prs

dd−pp−prt
dd−basic

power−iter
GraphLab

(c) pld speedup

10
0

10
1

10
2

10
2

10
3

10
4

10
5

no. of threads

ru
n
 t
im

e
 (

s
e
c
.)

run time vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

(d) twitter run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

s
c
a

la
b

ili
ty

scalability vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

ideal

(e) twitter scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

s
p

e
e

d
u

p

speedup vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

(f) twitter speedup

Joyce Jiyoung Whang

Experiments

10
0

10
1

10
2

10
2

10
3

10
4

10
5

no. of threads

ru
n
 t
im

e
 (

s
e
c
.)

run time vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

(g) friendster run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

s
c
a

la
b

ili
ty

scalability vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

ideal

(h) friendster scalability

0 10 20 30 40
0

5

10

15

20

no. of threads

s
p

e
e

d
u

p

speedup vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

(i) friendster speedup

10
0

10
1

10
2

10
1

10
2

10
3

10
4

10
5

no. of threads

ru
n
 t
im

e
 (

s
e
c
.)

run time vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

(j) sd1 run time

0 10 20 30 40
0

5

10

15

20

25

30

35

40

no. of threads

s
c
a

la
b

ili
ty

scalability vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

ideal

(k) sd1 scalability

0 10 20 30 40
0

5

10

15

20

25

no. of threads

s
p

e
e

d
u

p

speedup vs. no. of threads

dd−push

dd−push−prs

dd−push−prt

dd−pp−rsd

dd−pp−prs

dd−pp−prt

dd−basic

power−iter

(l) sd1 speedup

Joyce Jiyoung Whang

Experiments

Runtime of different PageRank implementations on pld dataset

Using 40 threads, the fastest GraphLabs method takes 478 seconds
whereas our push-based PageRank takes 17 seconds.

System Method Threads
40 32 16 8 1

GraphLab

sync 478 secs. 496 secs. 594 secs. 845 secs. 3,332 secs.
async-fifo 500 secs. 580 secs. 618 secs. 898 secs. 5,194 secs.
async-qfifo 788 secs. 804 secs. 970 secs. 1,292 secs. 5,098 secs.
async-sweep 4,186 secs. 5,162 secs. 9,156 secs. > 4 hrs. > 4 hrs.
async-prt > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs.

Galois

power-iter 132 secs. 155 secs. 299 secs. 510 secs. 3,650 secs.
dd-basic 62 secs. 82 secs. 140 secs. 269 secs. 2,004 secs.
dd-pp-prt 58 secs. 67 secs. 118 secs. 193 secs. 1,415 secs.
dd-push 17 secs. 22 secs. 36 secs. 53 secs. 355 secs.

Joyce Jiyoung Whang

Summary

Three key algorithm design axes

Work activation
Data access pattern
Scheduling

Data-driven, push-based PageRank algorithms achieve a significantly
superior scalability than standard PageRank implementations.

Joyce Jiyoung Whang

Big Data Lab

Email: jjwhang@skku.edu

Homepage: http://bigdata.cs.skku.edu/

Tel: 031-299-4396

Office: Engineering Building 2, #27326

Lab: Engineering Building 2, #26315B

Joyce Jiyoung Whang

http://bigdata.cs.skku.edu/

