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@ Work Activation

o Topology-driven
o Data-driven

@ Data Access Pattern

o Pull (Read)
o Pull-Push (Read-Write)
o Push (Write)

@ Scheduling

e FIFO/LIFO
e Task-specific priority scheduling
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@ PageRank: the importance of web pages
o Given a graph G = (V, &), a PageRank vector x
o S,: the set of incoming neighbors of node v
e 7,: the set of outgoing neighbors of node v
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1J. Whang, A. Lenharth, I. Dhillon, and K. Pingali. Scalable Data-driven PageRank: Algorithms, System lIssues, and Lessons
Learned. Euro-Par, 2015.
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@ Power Method: processing all the nodes at each iteration
e Work activation: topology-driven
o Data access pattern: pull (read-mostly access pattern)
e Scheduling: unordered

Ao

Figure 1: Topology-driven PageRank updates the PageRank values of all the nodes
at each iteration.
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@ Data-driven PageRank

e Dynamically maintaining a working set
e Only compute values which might change
e Order matters

@ On a Twitter graph (51 million nodes, 3 billion edges)

e Topology-driven: 4.3 billion PageRank updates
o Data-driven (basic): 1.6 billion PageRank updates
o Data-driven (best): 0.4 billion PageRank updates

Joyce Jiyoung Whang



@ Data-driven PageRank
o Initialize the worklist: the entire vertex set.
e Pick a node from the worklist, and compute the nodes PageRank.
e Add its outgoing neighbors to the worklist.

A

Figure 2: When B's PageRank is updated, A, C, and D should be updated.
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@ Data-driven PageRank
o Initialize the worklist: the entire vertex set.
e Pick a node from the worklist, and compute the nodes PageRank.
e Add its outgoing neighbors to the worklist.

A

Figure 3: When D’s PageRank is updated, E and G should be updated.

Joyce Jiyoung Whang



The PageRank x is computed as follows:
x=aPTx+(1-a)e

where P is a row-stochastic matrix (P = D71A) and e is the vector of all
ones. This is the linear system:

(I —aPT)x = (1-a)e.
and the residual:
r=(1-a)e—(I—aPT)x=aP x+ (1 -a)e—x.
When the j-th node is processed, the residual is decreased by rJ(.k)(l —a).

e r(k1) = eTp(k) rj(.k)(l —a).
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@ Speedup against the best single-threaded algorithm (Twitter graph)

speedup vs. no. of threads
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@ The basic pull-based data-driven PageRank
e Each node adds all the out-neighbors to the worklist.

@ Think PageRank as a linear system

e Each node maintains its residual value.
e Stopping criteria: the maximum residual < threshold

@ Pull-Push PageRank
e Residual computation:
Read/write operations on the neighbors
o If an outgoing-neighbor’s residual < threshold,
then, do not add the neighbor to the worklist.
= Filter out some work in the worklist.
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@ Pull-Push-based PageRank

o Pulls (reads) its neighbors’ values.
o Pushes (updates) its neighbors' values.

Figure 4. D’s PageRank is updated by reading B's and H’s PageRank.
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@ Pull-Push-based PageRank

o Stopping criteria: repeat until the residual is less than a threshold.
o X's PageRank — Adds residuals to X's outgoing neighbors.
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Figure 5: If D's PageRank is updated, it adds the residuals to E and G.
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@ Pull-Push-based PageRank

o X's residual is less than the threshold — do not add it to the worklist.
o Filter out work in the worklist.

A

Figure 6: If E's residual is less than a threshold, it is not added to the worklist.
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@ Speedup against the best single-threaded algorithm (Twitter graph)

speedup vs. no. of threads
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@ Exploiting the problem structure of PageRank
KD (R (R
v - v v

(new PageRank = current PageRank + current residual)

@ Push-based PageRank

e From pull-push PageRank, we can remove the read operations on the
incoming neighbors.
= Avoid extra work (the pull part)
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@ Push-based PageRank

e An active node updates its own value.
o Pushes (updates) its neighbors' values.
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Figure 7: If D's PageRank is updated, it pushes the residuals to E and G.
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@ Speedup against the best single-threaded algorithm (Twitter graph)
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@ Order of visiting nodes affects performance.

e The decrease of the total residual is proportional to the node’s residual.
= Define the priority as the residual per unit work.

@ Asynchronous, Autonomous Scheduler

o OBIM (ordered-by-integer-metric) priority scheduler

e Each thread uses limited communication to estimate the priority of the
high priority work.

e Potentially generating duplicate tasks in the scheduler

@ Bulk Synchronous Scheduler

e Set-semantics: there are no duplicate work items in the worklist.

e Periodically, compute the distribution of priorities.

o Use the distribution to define a threshold for the priority.

o Process a subset of nodes whose priority is greater than the threshold.
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@ Speedup against the best single-threaded algorithm (Twitter graph)
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# nodes # edges CSR size

pld 39M 623M 2.7G
sdl 83M  1,937M 7.9G
Twitter 51M  3,228M 13G
Friendster 67TM  3,623M 14G

Table 1: Input Graphs

Algorithm Activation Access Schedule
dd-push Data-driven Push  FIFOs w/ Stealing
dd-push-prs  Data-driven Push  Bulk-sync Priority
dd-push-prt  Data-driven Push Async Priority

dd-pp-rsd Data-driven  Pull-Push  FIFOs w/ Stealing
dd-pp-prs Data-driven  Pull-Push  Bulk-sync Priority

dd-pp-prt Data-driven  Pull-Push Async Priority
dd-basic Data-driven Pull  FIFOs w/ Stealing
tp Topology Pull Load Balancer

Table 2: Summary of algorithm design choices
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@ Runtime of different PageRank implementations on pld dataset

o Using 40 threads, the fastest GraphLabs method takes 478 seconds
whereas our push-based PageRank takes 17 seconds.

System Method Threads
40 32 16 8 1

sync 478 secs. 496 secs. 594 secs. 845 secs. 3,332 secs.
async-fifo 500 secs. 580 secs. 618 secs. 898 secs. 5,194 secs.

GraphLab  async-gfifo 788 secs. 804 secs. 970 secs. 1,292 secs. 5,098 secs.
async-sweep 4,186 secs. 5,162 secs. 9,156 secs. > 4 hrs. > 4 hrs.
async-prt > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs. > 4 hrs.
power-iter 132 secs. 155 secs. 299 secs. 510 secs. 3,650 secs.

Galois dd-basic 62 secs. 82 secs. 140 secs. 269 secs. 2,004 secs.
dd-pp-prt 58 secs. 67 secs. 118 secs. 193 secs. 1,415 secs.
dd-push 17 secs. 22 secs. 36 secs. 53 secs. 355 secs.
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@ Three key algorithm design axes

e Work activation
e Data access pattern
e Scheduling

@ Data-driven, push-based PageRank algorithms achieve a significantly
superior scalability than standard PageRank implementations.
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Email: jjwhang@skku.edu

Homepage: http://bigdata.cs.skku.edu/
Tel: 031-299-4396

Office: Engineering Building 2, #27326

Lab: Engineering Building 2, #26315B
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