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Social Network Analysis

• Huge size of social network graphs poses great challenge on 
the analysis 

• Two important ways to solve the challenge
– Parallelization

• Large scale distributed parallelization

– Approximation
• In many cases, approximate answers are sufficient, e.g. friend 

recommendations 
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Over 900 million active users
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Over 175 million registered users



Need for Approximation

• Problem: compute the number of length-k
paths between every two vertices in a graph

• Solution 1:  graph traversals
– Too expensive for large graphs

• Solution 2: linear algebra formulation
– Represent a graph by its adjacency matrix A

– AK(i,j) is number of length-k paths between 
vertices i and j

– Still very expensive
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Low-rank Approximation

• The adjacency matrix of an undirected graph can 
be approximated by the product of three 
matrices V, D and VT

– r << m, called rank, is an input parameter
– The larger the r, the smaller the approximation error
– VTV = I (Identity matrix)
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Approximating Ak by low-rank 
approximation
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The Limitation of Low-rank 
Approximation

• Large rank r is needed for large graphs to 
make the approximation error acceptable

• The computation and memory costs are 
expensive for large graphs and rank
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How to improve it



Structure In Social Networks

• Not uniformly random graphs

• Clusters with few inter-cluster 
edges

• Clustered low-rank 
approximation
1. Find clusters by partitioning

2. Use low-rank approximation 
for each cluster

3. Account for inter-cluster 
edges
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Our Contributions

• A new parallel partitioning algorithm for social 
networks

– Easy to parallelize 

– Compared to ParMetis

• Faster and scales better

• Generates similar quality partitions when ParMetis succeeds

• First parallel implementation of clustered low-
rank approximation

• Application to link prediction of very large graphs
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Matrix View of Clustering
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Example: arXiv Network
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Low-rank Approximation on 
diagonal blocks
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1. PEK: A new graph partitioning 
algorithm for social networks

• Intuition: High degree vertices capture the high level structure of such 
graphs

• PEK Algorithm:
– Extract a small representative sub-graph(high degree vertices and 

their edges)
– Partition this sub-graph
– Propagate partitioning to entire graph
– Refine with weighted kernel K-Means
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Extract a Representative Sub-Graph

• Extract a small number of high-degree vertices 
and the edges between them

– Graph is randomly and evenly distributed across 
processes

– Each process selects its local vertices with degree 
larger than a threshold

– Those vertices and the edges between them form 
the representative sub-graph
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Partition Sub-graph

• Use ParMetis to partition sub-graph

– Takes a small fraction of time

• Project partitions of vertices in sub-graph to 
original graph

– Projected vertices assigned to partitions

– Un-projected vertices are not assigned
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Propagate Partitioning(1) 

• Each partition has a virtual center point(centroid)

– Initially computed based on the partitions of 
projected vertices

• Distance between a vertex to the centroid of a partition  

• Measure how close a vertex to the partition

• Computed based on the partition size, #edges of the vertex to 
the partition, #edges within the partitions, etc.
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Propagate Partitioning(2) 

• Visit un-projected vertices in breadth-first order
– Start from projected vertices

• For each un-projected vertex :
– Assign to partition with the closest centroid
– Update the centroid

• Each process has its own copy of all centroids 
– Do not synchronize updates of centroids
– No impact on partition quality 

16

Centroid of Part1

Centroid of Part2



Refine Partitions

• Iteratively improve initial partitioning

• On every iteration, each process:
– Visits its local vertices on the partition boundary

– For each boundary vertex v:
• Moves v from partition Parti to Partj if v is closer to Partj

• If moved, update the old and new centroids

• Processes synchronize updates of centroids once 
every iteration
– Less communication

– Does not degrade quality 
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2. Approximating Diagonal Blocks
• Assigns partitions to processes 
• Each process computes low rank approximation on partitions independently
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3. Approximating Off-Diagonal Blocks
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• Undirected graph =>  symmetric adjacency matrix A
– Only one of Aij and Aji needs to be approximated 

• A job, Ji, j , i<j , denotes approximating either Aij or Aji

– Private jobs of process Pi, e.g. J1,4
• Can be finished by Pi without communication

– Shared jobs between Pi and Pj, e.g. J2,3
• Either Pi or Pj can finish it 
• Communication is needed between Pi and Pj

• Processes first finish its private jobs 
• Dynamic load balancing for scheduling shared jobs
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Experimental Setting

• Machine: Ranger(Texas Advanced Computing Center)
– Each node has a 4 x 4-core AMD Opteron 2.2GHz CPU and 

32GB memory. 

– InfiniBand networks with 5GB/s point-to-point bandwidth 

• Libraries: Intel ICC 10.1, OpenMPI 1.3, ARPACK++, 
GotoBLAS 1.3 and Elemental 1.7

• Assign one process per node
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Datasets

• Converted the graphs to undirected graphs, 
the table shows the statistics of graphs after 
conversion

Name #Vertices #Edges Description

SocLive 3,828,682 39,870,459 LiveJournal online social network

Twitter_10M 11,316,799 63,555,738 Twitter social network

Twitter_40M 41,652,230 1,202,513,046 Twitter social network
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Runtime and Speedup of Parallel 
Clustered Low-rank Approximation
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• #Partitions
– SocLive: 500

– Twitter_10M: 500

– Twitter_40M: 1000

• Rank for Diagonal Phase
– SocLive: 100

– Twitter_10M: 100

– Twitter_40M: 100
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Runtime and Speedup in Each Phase

• Partitioning and offDiagonal phases scale well
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Load Balancing of diagonal and 
offDiagonal Phases  

• #Partitions is small compared to #Processes, not 
enough space for load balancing in diagonal phase 
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#Partitions:
• SocLive: 500
• Twitter_10M: 500
• Twitter_40M: 1000
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Graph Partitioning 
Comparing PEK with ParMetis
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• #Partitions: 500
• Degree Threshold:

– SocLive: 42(5% vertices)
– Twitter_10M:200(less than 

5% vertices)

• Cut-size and NormCut
– Lower is Better
– cut-size:  the edges across 

partitions
– NormCut: normalized cut-

size by the total degree of 
vertices of each partition

– divided by the number of 
clusters

• ParMetis cannot partition 
Twitter_40M since the 
memory is not enough

numProcesses

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SocLive, NormCut

●● ● ● ● ●

48 16 32 64 128

Twitter_10M, NormCut

●● ● ● ● ●

48 16 32 64 128

0

5000

10000

15000

20000

25000

30000

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

SocLive, Cut−Size

●● ● ● ● ●

48 16 32 64 128

Twitter_10M, Cut−Size

●● ● ● ● ●

48 16 32 64 128

0

100

200

300

400

0

2000

4000

6000

8000

SocLive, Runtime(sec)

●

●

●

●
●

●

48 16 32 64 128

Twitter_10M, Runtime(sec)
●
●
●

●

●

●

48 16 32 64 128

● ParMetis PEK



Link Prediction

• Our parallel clustered low-rank approximation enabled first ever 
study of Katz measure on large real-world social networks

• Randomly remove 30% edges from graphs and perform link 
prediction on the resulting graphs.  

• Precision is the ratio of correct predictions in top-k predictions 
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Conclusion

• Developed a new graph partitioning algorithm for 
social networks
– Fast and scales well to large number of processes 
– Faster than ParMetis and similar partition quality as 

ParMetis

• Parallelized clustered low-rank approximation and 
applied it on large real-world social networks

• Benchmark combines:
– Irregular and regular computations
– Dense and sparse data structures

• Approximation and Parallelization are the keys for 
solving large-scale social network problems 
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