
Parallel Clustered Low-Rank Approximation
and Its Application to Link Prediction*

Joyce Jiyoung Whang,

Department of Computer Science & Engineering, SKKU

1

* Published in International Workshop on Languages and Compilers for Parallel
Computing (LCPC), 2012.

Social Network Analysis

• Huge size of social network graphs poses great challenge on
the analysis

• Two important ways to solve the challenge
– Parallelization

• Large scale distributed parallelization

– Approximation
• In many cases, approximate answers are sufficient, e.g. friend

recommendations

2

Over 900 million active users

Over 500 million active users

Over 175 million registered users

Need for Approximation

• Problem: compute the number of length-k
paths between every two vertices in a graph

• Solution 1: graph traversals
– Too expensive for large graphs

• Solution 2: linear algebra formulation
– Represent a graph by its adjacency matrix A

– AK(i,j) is number of length-k paths between
vertices i and j

– Still very expensive

3

Low-rank Approximation

• The adjacency matrix of an undirected graph can
be approximated by the product of three
matrices V, D and VT

– r << m, called rank, is an input parameter
– The larger the r, the smaller the approximation error
– VTV = I (Identity matrix)

4

VA
D VT

m x m m x r

r x r m x r

Approximating Ak by low-rank
approximation

5

V
m

x
rAmxm

Drxr Vmxr
T

Amxm

2
V

m
x

r Drxr Vmxr
T

V
m

x
r Drxr Vmxr

T

Identity Matrix=

V
m

x
r Drxr Vmxr

T

2

Amxm
V

m
x

r Drxr Vmxr
T

kk

Large matrix multiplication becomes small matrix multiplication

The Limitation of Low-rank
Approximation

• Large rank r is needed for large graphs to
make the approximation error acceptable

• The computation and memory costs are
expensive for large graphs and rank

6

How to improve it

Structure In Social Networks

• Not uniformly random graphs

• Clusters with few inter-cluster
edges

• Clustered low-rank
approximation
1. Find clusters by partitioning

2. Use low-rank approximation
for each cluster

3. Account for inter-cluster
edges

7

Our Contributions

• A new parallel partitioning algorithm for social
networks

– Easy to parallelize

– Compared to ParMetis

• Faster and scales better

• Generates similar quality partitions when ParMetis succeeds

• First parallel implementation of clustered low-
rank approximation

• Application to link prediction of very large graphs

8

Matrix View of Clustering

9

n1

n3

n2

n4

n1 n2 n3 n4

1 0

0 1

1 1

0 1

1 0

1 1

1 0

0 1

n1

n2

n3

n4

n1

n3

n2

n4

n1 n3 n2 n4

1 1

1 1

0 1

0 0

0 0

1 0

1 1

1 1

n1

n3

n2

n4

Example: arXiv Network

10
21,363 vertices and 91,314 edges

A

A11

A22

A33

A31

A12

A31

A13

A32

A23

A44

A14

A24

A34

A41 A42 A43

Clustered Low-rank Approximation

11

Low-rank Approximation on
diagonal blocks

Vi»Aii

Dii Vi
T

Approximating Off-Diagonal
blocks

Vj Aij
Dij

Vi
TGraph

Partitioning

Step 1 Step 2 Step 3

»

v
1

v
2

v
3

D11

D22

D33

D23

D13

D21

D32D31

D12
v

4

v1
T

v2
T

v3
T

v4
T

D14

D24

D34

D44D42D41 D43

Compared to low-rank approximation
 Local structure to speed up computation
 Same storage of eigenvectors but higher

rank

1. PEK: A new graph partitioning
algorithm for social networks

• Intuition: High degree vertices capture the high level structure of such
graphs

• PEK Algorithm:
– Extract a small representative sub-graph(high degree vertices and

their edges)
– Partition this sub-graph
– Propagate partitioning to entire graph
– Refine with weighted kernel K-Means

12

Extract subgraph

Initial Partitioning

Project Partitions

Propagate
Partitioning

Refine
Partitioning

Extract a Representative Sub-Graph

• Extract a small number of high-degree vertices
and the edges between them

– Graph is randomly and evenly distributed across
processes

– Each process selects its local vertices with degree
larger than a threshold

– Those vertices and the edges between them form
the representative sub-graph

13

Partition Sub-graph

• Use ParMetis to partition sub-graph

– Takes a small fraction of time

• Project partitions of vertices in sub-graph to
original graph

– Projected vertices assigned to partitions

– Un-projected vertices are not assigned

14

Propagate Partitioning(1)

• Each partition has a virtual center point(centroid)

– Initially computed based on the partitions of
projected vertices

• Distance between a vertex to the centroid of a partition

• Measure how close a vertex to the partition

• Computed based on the partition size, #edges of the vertex to
the partition, #edges within the partitions, etc.

15

Propagate Partitioning(2)

• Visit un-projected vertices in breadth-first order
– Start from projected vertices

• For each un-projected vertex :
– Assign to partition with the closest centroid
– Update the centroid

• Each process has its own copy of all centroids
– Do not synchronize updates of centroids
– No impact on partition quality

16

Centroid of Part1

Centroid of Part2

Refine Partitions

• Iteratively improve initial partitioning

• On every iteration, each process:
– Visits its local vertices on the partition boundary

– For each boundary vertex v:
• Moves v from partition Parti to Partj if v is closer to Partj

• If moved, update the old and new centroids

• Processes synchronize updates of centroids once
every iteration
– Less communication

– Does not degrade quality

17

2. Approximating Diagonal Blocks
• Assigns partitions to processes
• Each process computes low rank approximation on partitions independently

18

A11
A22 A33 A44

P1 P2 P3

Sorted by the weights: #nonzero(Aii) x rank

Assigns partition to the process currently
having the least weights

Graph is reorganized after assignment

A1

A22

A33

A21

A12

A31

A13

A32

A23

A44

A14

A24

A34

A41A42 A43

P1

P2

P3

v
1

v
2

v
3

v
4

D11

D22

D33

D44

3. Approximating Off-Diagonal Blocks

19

• Undirected graph => symmetric adjacency matrix A
– Only one of Aij and Aji needs to be approximated

• A job, Ji, j , i<j , denotes approximating either Aij or Aji

– Private jobs of process Pi, e.g. J1,4
• Can be finished by Pi without communication

– Shared jobs between Pi and Pj, e.g. J2,3
• Either Pi or Pj can finish it
• Communication is needed between Pi and Pj

• Processes first finish its private jobs
• Dynamic load balancing for scheduling shared jobs

v
1

v
2

v
3

v
4

A1

A22

A33

A21

A12

A31

A13

A32

A23

A44

A14

A24

A34

A41A42 A43

P1

P2

P3

D11

D22

D33

D44

Experimental Setting

• Machine: Ranger(Texas Advanced Computing Center)
– Each node has a 4 x 4-core AMD Opteron 2.2GHz CPU and

32GB memory.

– InfiniBand networks with 5GB/s point-to-point bandwidth

• Libraries: Intel ICC 10.1, OpenMPI 1.3, ARPACK++,
GotoBLAS 1.3 and Elemental 1.7

• Assign one process per node

20

Datasets

• Converted the graphs to undirected graphs,
the table shows the statistics of graphs after
conversion

Name #Vertices #Edges Description

SocLive 3,828,682 39,870,459 LiveJournal online social network

Twitter_10M 11,316,799 63,555,738 Twitter social network

Twitter_40M 41,652,230 1,202,513,046 Twitter social network

21

Runtime and Speedup of Parallel
Clustered Low-rank Approximation

22

• #Partitions
– SocLive: 500

– Twitter_10M: 500

– Twitter_40M: 1000

• Rank for Diagonal Phase
– SocLive: 100

– Twitter_10M: 100

– Twitter_40M: 100

numProcesses

1000

1500

2000

2500

3000

1000

2000

3000

4000

5000

6000

7000

1500

2000

2500

3000

3500

4000

4500

5000

SocLive, Runtime(sec)

●

●

● ● ● ●

48 16 32 64 128

Twitter_10M, Runtime(sec)

●

●

●
●

● ●

48 16 32 64 128

Twitter_40M, Runtime(sec)

●

●

●

●

32 64 128 256

5

10

15

20

10

20

30

40

40

60

80

100

120

140

SocLive, Speedup

●

●

●
●

●

●

48 16 32 64 128

Twitter_10M, Speedup

●

●

●

●

●
●

48 16 32 64 128

Twitter_40M, Speedup

●

●

●

●

32 64 128 256

Runtime and Speedup in Each Phase

• Partitioning and offDiagonal phases scale well

23

SpeedupRuntime in Each Phase

numProcesses

ru
n
ti
m

e
 (

s
e
c
)

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32 64 128 256

S
o

c
L

iv
e

T
w

itte
r_

1
0

M
T

w
itte

r_
4

0
M

PartitionTime

ComputeDiagonal

ComputeOffDiagonal

numProcesses

10

20

30

40

20

40

60

80

40

60

80

100

120

140

160

180

SocLive

●
●
●

●

●

●

●

●

●
● ● ●

●
●

●

●

●

●

4 8 16 32 64 128

Twitter_10M

●
●
● ●

●

●

●
●

●
● ● ●

●
●
●

●

●

●

4 8 16 32 64 128

Twitter_40M

●

●

●

●

●
●

●
●

●

●

●

●

32 64 128 256

● PartitionTime

● ComputeDiagonal

● ComputeOffDiagonal

Load Balancing of diagonal and
offDiagonal Phases

• #Partitions is small compared to #Processes, not
enough space for load balancing in diagonal phase

24

#Partitions:
• SocLive: 500
• Twitter_10M: 500
• Twitter_40M: 1000

numProcesses

R
u
n

ti
m

e
(s

e
c
)

0

500

1000

1500

0

500

1000

1500

2000

0

200

400

600

800

1000

1200

SocLive, Diagonal

4 8 16 32 64 128

Twitter_10M, Diagonal

4 8 16 32 64 128

Twitter_40M, Diagonal

32 64 128 256

0

100

200

300

400

500

600

700

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

2500

SocLive, OffDiagonal

4 8 16 32 64 128

Twitter_10M, OffDiagonal

4 8 16 32 64 128

Twitter_40M, OffDiagonal

32 64 128 256

max

min

Graph Partitioning
Comparing PEK with ParMetis

25

• #Partitions: 500
• Degree Threshold:

– SocLive: 42(5% vertices)
– Twitter_10M:200(less than

5% vertices)

• Cut-size and NormCut
– Lower is Better
– cut-size: the edges across

partitions
– NormCut: normalized cut-

size by the total degree of
vertices of each partition

– divided by the number of
clusters

• ParMetis cannot partition
Twitter_40M since the
memory is not enough

numProcesses

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SocLive, NormCut

●● ● ● ● ●

48 16 32 64 128

Twitter_10M, NormCut

●● ● ● ● ●

48 16 32 64 128

0

5000

10000

15000

20000

25000

30000

0e+00

2e+04

4e+04

6e+04

8e+04

1e+05

SocLive, Cut−Size

●● ● ● ● ●

48 16 32 64 128

Twitter_10M, Cut−Size

●● ● ● ● ●

48 16 32 64 128

0

100

200

300

400

0

2000

4000

6000

8000

SocLive, Runtime(sec)

●

●

●

●
●

●

48 16 32 64 128

Twitter_10M, Runtime(sec)
●
●
●

●

●

●

48 16 32 64 128

● ParMetis PEK

Link Prediction

• Our parallel clustered low-rank approximation enabled first ever
study of Katz measure on large real-world social networks

• Randomly remove 30% edges from graphs and perform link
prediction on the resulting graphs.

• Precision is the ratio of correct predictions in top-k predictions

26

Katz(vi,v j) = b k

k=1

¥

å pathsvi®v j
length=k

factor damping is where

#partitions:500
rank of diagonal:50

#partitions:500
Rank of diagonal:100

Top−k

P
re

c
is

io
n

0.0

0.2

0.4

0.6

0.8

1.0

SocLive

10 100 1000

Twitter_10M

10 100 1000

Conclusion

• Developed a new graph partitioning algorithm for
social networks
– Fast and scales well to large number of processes
– Faster than ParMetis and similar partition quality as

ParMetis

• Parallelized clustered low-rank approximation and
applied it on large real-world social networks

• Benchmark combines:
– Irregular and regular computations
– Dense and sparse data structures

• Approximation and Parallelization are the keys for
solving large-scale social network problems

27

