Parallel Clustered Low-Rank Approximation and Its Application to Link Prediction*

Joyce Jiyoung Whang,
Department of Computer Science & Engineering, SKKU

^{*} Published in *International Workshop on Languages and Compilers for Parallel Computing (LCPC)*, 2012.

Social Network Analysis

Huge size of social network graphs poses great challenge on the analysis

Over 900 million active users

Over 500 million active users

- Two important ways to solve the challenge
 - Parallelization
 - Large scale distributed parallelization
 - Approximation
 - In many cases, approximate answers are sufficient, e.g. friend recommendations

Need for Approximation

- Problem: compute the number of length-k
 paths between every two vertices in a graph
- Solution 1: graph traversals
 - Too expensive for large graphs
- Solution 2: linear algebra formulation
 - Represent a graph by its adjacency matrix A
 - $-A^{k}(i,j)$ is number of length-k paths between vertices i and j
 - Still very expensive

Low-rank Approximation

• The adjacency matrix of an undirected graph can be approximated by the product of three matrices \mathcal{V} , \mathcal{D} and \mathcal{V}^{T}

- r << m, called rank, is an input parameter</p>
- The larger the r, the smaller the approximation error
- $\mathcal{V}^{\mathsf{T}} \mathcal{V} = I$ (Identity matrix)

Approximating A^k by low-rank approximation

The Limitation of Low-rank Approximation

- Large rank r is needed for large graphs to make the approximation error acceptable
- The computation and memory costs are expensive for large graphs and rank

Structure In Social Networks

- Not uniformly random graphs
- Clusters with few inter-cluster edges
- Clustered low-rank approximation
 - 1. Find clusters by partitioning
 - 2. Use low-rank approximation for each cluster
 - 3. Account for inter-cluster edges

Our Contributions

- A new parallel partitioning algorithm for social networks
 - Easy to parallelize
 - Compared to ParMetis
 - Faster and scales better
 - Generates similar quality partitions when ParMetis succeeds
- First parallel implementation of clustered lowrank approximation
- Application to link prediction of very large graphs

Matrix View of Clustering

	n_1	n ₂	n_3	n ₄
n ₁	1	0	1	1
n ₂	0	1	0	1
n ₃	1	0	1	0
n ₄	1	1	0	1

	n_1	n ₃	n ₂	n ₄
n_1	1	1	0	1
n ₃	1	1	0	0
n ₂	0	0	1	1
n ₄	1	0	1	1

Example: arXiv Network

21,363 vertices and 91,314 edges

Clustered Low-rank Approximation

Compared to low-rank approximation

- ☐ Local structure to speed up computation
- ☐ Same storage of eigenvectors but higher rank 11

1. PEK: A new graph partitioning algorithm for social networks

- Intuition: High degree vertices capture the high level structure of such graphs
- PEK Algorithm:
 - Extract a small representative sub-graph(high degree vertices and their edges)
 - Partition this sub-graph
 - Propagate partitioning to entire graph
 - Refine with weighted kernel K-Means

Extract a Representative Sub-Graph

- Extract a small number of high-degree vertices and the edges between them
 - Graph is randomly and evenly distributed across processes
 - Each process selects its local vertices with degree larger than a threshold
 - Those vertices and the edges between them form the representative sub-graph

Partition Sub-graph

- Use ParMetis to partition sub-graph
 - Takes a small fraction of time
- Project partitions of vertices in sub-graph to original graph
 - Projected vertices assigned to partitions
 - Un-projected vertices are not assigned

Propagate Partitioning(1)

- Each partition has a virtual center point(centroid)
 - Initially computed based on the partitions of projected vertices
- Distance between a vertex to the centroid of a partition
 - Measure how close a vertex to the partition
 - Computed based on the partition size, #edges of the vertex to the partition, #edges within the partitions, etc.

Propagate Partitioning(2)

- Visit un-projected vertices in breadth-first order
 - Start from projected vertices
- For each un-projected vertex :
 - Assign to partition with the closest centroid
 - Update the centroid
- Each process has its own copy of all centroids
 - Do not synchronize updates of centroids
 - No impact on partition quality

Centroid of Part₁

Centroid of Part,

Refine Partitions

- Iteratively improve initial partitioning
- On every iteration, each process:
 - Visits its local vertices on the partition boundary
 - For each boundary vertex v:
 - Moves v from partition Part_i to Part_j if v is closer to Part_j
 - If moved, update the old and new centroids
- Processes synchronize updates of centroids once every iteration
 - Less communication
 - Does not degrade quality

2. Approximating Diagonal Blocks

- Assigns partitions to processes
- Each process computes low rank approximation on partitions independently

Sorted by the weights: #nonzero(A_{ii}) x rank

Assigns partition to the process currently having the least weights

Graph is reorganized after assignment

P ₁ D22	\mathcal{N}_2	\mathcal{A}_{22}	\mathcal{A}_{23}	\mathcal{A}_{21}	${\cal A}_{24}$
P ₂	\mathcal{V}_3	\mathcal{A}_{32}	\mathcal{A}_{33}	\mathcal{A}_{31}	\mathcal{A}_{34}
\mathcal{D}_{11}	${\cal V}_I$	$\mathcal{A}_{_{12}}$	\mathcal{A}_{i3}	$\mathcal{A}_{_{I}}$	$ \mathcal{A}_{_{14}} $
P ₃	\mathcal{V}_4	\mathcal{A}_{42}	\mathcal{A}_{43}	\mathcal{A}_{41}	\mathcal{A}_{44}

3. Approximating Off-Diagonal Blocks

- Undirected graph => symmetric adjacency matrix A
 - Only one of A_{ii} and A_{ii} needs to be approximated
- A job, $J_{i,j}$, i < j, denotes approximating either A_{ij} or A_{ji}
 - Private jobs of process P_{i} , e.g. $J_{1,4}$
 - Can be finished by P_i without communication
 - Shared jobs between Pi and Pj, e.g. $J_{2,3}$
 - Either P_i or P_i can finish it
 - Communication is needed between P_i and P_j
- Processes first finish its private jobs
- Dynamic load balancing for scheduling shared jobs

P_1	22 ~	\mathcal{A}_{22}	\mathcal{A}_{23}	\mathcal{A}_{21}	\mathcal{A}_{24}
P_2	33 × ×	\mathcal{A}_{32}	\mathcal{A}_{33}	\mathcal{A}_{31}	\mathcal{A}_{34}
\mathcal{D}		$\mathcal{A}_{_{12}}$	\mathcal{A}_{i3}	$\mathcal{A}_{_{I}}$	$\mathcal{A}_{_{14}}$
P_3	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	\mathcal{A}_{42}	\mathcal{A}_{43}	\mathcal{A}_{41}	\mathcal{A}_{44}

Experimental Setting

- Machine: Ranger(Texas Advanced Computing Center)
 - Each node has a 4 x 4-core AMD Opteron 2.2GHz CPU and 32GB memory.
 - InfiniBand networks with 5GB/s point-to-point bandwidth
- Libraries: Intel ICC 10.1, OpenMPI 1.3, ARPACK++, GotoBLAS 1.3 and Elemental 1.7
- Assign one process per node

Datasets

 Converted the graphs to undirected graphs, the table shows the statistics of graphs after conversion

Name	#Vertices	#Edges	Description
SocLive	3,828,682	39,870,459	LiveJournal online social network
Twitter_10M	11,316,799	63,555,738	Twitter social network
Twitter_40M	41,652,230	1,202,513,046	Twitter social network

Runtime and Speedup of Parallel Clustered Low-rank Approximation

#Partitions

SocLive: 500

Twitter_10M: 500

– Twitter_40M: 1000

Rank for Diagonal Phase

SocLive: 100

– Twitter_10M: 100

Twitter 40M: 100

Runtime and Speedup in Each Phase

Partitioning and offDiagonal phases scale well

Load Balancing of diagonal and offDiagonal Phases

 #Partitions is small compared to #Processes, not enough space for load balancing in diagonal phase

#Partitions:

• SocLive: 500

• Twitter_10M: *500*

Twitter_40M: 1000

Graph Partitioning Comparing PEK with ParMetis

- #Partitions: 500
- Degree Threshold:
 - SocLive: 42(5% vertices)
 - Twitter_10M:200(less than 5% vertices)
- Cut-size and NormCut
 - Lower is Better
 - cut-size: the edges across partitions
 - NormCut: normalized cutsize by the total degree of vertices of each partition
 - divided by the number of clusters
- ParMetis cannot partition Twitter_40M since the memory is not enough

Link Prediction

Our parallel clustered low-rank approximation enabled first ever study of Katz measure on large real-world social networks

$$Katz(v_i, v_j) = \sum_{k=1}^{\infty} b^k \left| paths_{v_i \to v_j}^{length=k} \right|$$
 where β is damping factor

- Randomly remove 30% edges from graphs and perform link prediction on the resulting graphs.
- Precision is the ratio of correct predictions in *top-k* predictions

Conclusion

- Developed a new graph partitioning algorithm for social networks
 - Fast and scales well to large number of processes
 - Faster than ParMetis and similar partition quality as ParMetis
- Parallelized clustered low-rank approximation and applied it on large real-world social networks
- Benchmark combines:
 - Irregular and regular computations
 - Dense and sparse data structures
- Approximation and Parallelization are the keys for solving large-scale social network problems