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1.  Introduction

In 1958 van der Pauw showed that the sheet resistivity of a 
metallic sample can be obtained from any arrangement of four 
point contacts on the edge of a flat homogeneous sample of 
known thickness [1]. The method uses two probes to supply 
current to the sample, and another two probes to measure the 
electric potential difference. Van der Pauw defined the resist­
ance RPQ,RS as R V V jPQ RS S R PQ, ( )/= −  using the potential dif­
ference between the contact points R and S when current jPQ 
flows from P to Q. RQR,SP is defined in the same way. The 
original van der Pauw relation is given as:

R Rexp exp 1PQ RS QR SP, ,( / ) ( / )λ λ− + − =� (1)

where d/λ ρ π=  and ρ is the resistivity of the sample with 
thickness d. The van der Pauw relation has important 

practical applications in measuring the resistivity and Hall 
coefficient for samples of arbitrary shape [1], and has been 
applied to different types of transport phenomena such as 
heat transport measurements [2, 3]. However, the van der 
Pauw relation (equation (1)) is only applicable to homo­
geneous samples with uniform thickness and no holes. So 
when we use the van der Pauw method for samples with 
defects (samples with holes, non-homogeneous samples, 
etc) we cannot measure the exact value of the resistivity of 
the given sample.

So in order to use the van der Pauw method to measure the 
resistivity of samples with defects, scientists have developed 
a method of calculating the measuring error, which is pro­
portional to the sensitivity of the sheet resistance (resistivity 
divided by the sample thickness) if the size of the hole is small 
enough [4–10]. The sensitivity of the sheet resistance depends 
on the sample and the geometry of its hole. Although we are 
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able to calculate the resistivity of a given sample with a hole 
if we know the sensitivity of the sample, calculation of the 
sensitivity is complicated, and the process of computing the 
sensitivity has to be repeated every time the sample’s geom­
etry is changed. Research into the influence of certain types of 
cracks and holes in the sample has been done [11]. However, 
this research can only be applied to limited types of sample 
defects.

Recently, work has been done to modify the original van 
der Pauw method and develop a method of finding out the 
value of ν, which is crucial for calculating the sheet resis­
tivity of the sample [12, 13]. We call this the modified van der 
Pauw method. However, the method is very complicated and 
is only applicable to very limited types of sample geometry. 
Moreover, we are not able to calculate the resistivity of the 
sample if it has multiple holes.

A six-probe generalization has been proposed to make 
the modified van der Pauw method applicable to all types of 
sample geometry [14]. Using this method, there are seven 
unknowns (five angular variables, the Riemann modulus 
and sheet resistivity), but nine independent modified van der 
Pauw relations can be given, allowing the determination of all 
unknown variables. However, this method is highly compu­
tationally inefficient, and with heuristics being used to solve 
these highly nonlinear equations the error can be significantly 
large; therefore this method is generally inapplicable. So the 
six-probe generalization was unable to overcome the prob­
lems with the modified van der Pauw method. Currently, the 

modified van der Pauw method and its six-probe generaliza­
tion are the only modifications which can be applied to sam­
ples with single hole.

The present work was done in order to improve the modi­
fied van der Pauw method, which has limited applicability, 
and derive a universal method for samples with various geom­
etries, including samples with multiple holes. Also, the new 
method should be computationally efficient and convenient to 
use.

2.  A brief review of the modified van der Pauw 
method

It has recently been investigated theoretically and partially 
experimentally that in the case of a sample with one iso­
lated hole the original van der Pauw relation becomes an 
inequality [12]:

R Rexp exp 1.PQ RS QR SP, ,( / ) ( / ) ⩽λ λ ν− + − =� (2)

The original van der Pauw method can be proved by con­
formally mapping an arbitrary sample to a circle, that can also 
be identified as a periodic line of points. A similar idea was 
used to map a sample with a hole to a cylinder of finite length, 
that can also be identified as a periodic lattice (figure  1). 
Calculating the potential in the periodic lattice, the four probe 
resistivities are given as a function of the sheet resistivity, 
h, the Riemann modulus and , , ,α β γ δ, the angles between 
probes after they have been mapped:

Figure 1.  Sample (a) can be conformally mapped to a circle (b). Similarly a sample with a hole (c) can be conformally mapped to an 
annulus (d) or a cylinder (e) of height H and circumference p. A cylinder can also be identified as a periodic lattice (f). The Riemann 
modulus of the sample is defined on the cylinder or lattice as /π=h H p4 , and on the annulus as /=h R r2 ln , but there is no algebraic 
expression for a arbitrary sample with a hole.

Meas. Sci. Technol. 27 (2016) 125001
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While it is known that any sample with a hole can be con­
formally mapped to a cylinder, the exact numerical relation 
that provides mapping is only known for certain geometries 
such as a rectangular hole in a rectangular sample with iden­
tical centers, or elliptically shaped samples and holes [15]. As 
such, in general geometries, the angles between probes after 
they have been mapped and the Riemann modulus h of the 
sample is not known, resulting in too many unknowns for the 
traditional van der Pauw method to be applicable.

In this paper we present two methods to calculate the value 
ν. The first method uses the fact that the value of ν is not very 
sensitive to small changes in the values of , , ,α β γ δ. So we 
made an approximation of ν which is very easy to calculate. 
We will call this method 1. The second method uses the fact 
that the ν value of the given sample depends only on the geom­
etry, not the type of material of which the sample is made. We 
will call this method 2. Both methods are derived theoretically 
then confirmed experimentally.

3.  Methodology

We used aluminum sheets (99.99% purity) of thickness 40 μm 
and a size of 10 cm by 10 cm with one or more holes for exper­
iments on method 1, and both aluminum sheets and copper 
sheets (99.99% purity) of thickness 40 μm and size 10 cm by 
10 cm with one or more holes for experiments on method 2. 
The metal sheets we used in the experiments are homogeneous 
and have a uniform thickness. The resistivity of the aluminum 
sheets is 3.03 10 8× Ω ⋅−  m, and the resistivity of the copper 
sheets is 1.84 10 8× Ω ⋅−  m. The resistivity values of the metal 
sheets were obtained by applying the original van der Pauw 
method to sheets without any holes. We used a razor blade 
to make holes in the metal sheets. The area of the holes was 
measured by edge detection and image processing of photo­
graphs of the samples with the C++ program. The current was 
supplied to the samples using a DC power supply (Good Will 
Instrument, model GPS-4303); the value of the current was 
3.22 A for methods 1 and 2. During the experiment, we used 
an infrared thermal camera (FLIR model E40) to check the 
temperature change of the metallic sample, and a temperature  
change of less than 1 K was observed. This is because the mea­
surement of the potential difference between the two probes 

takes no more than a few seconds. Therefore the rate of change 
of resistivity values of the metal sheets is smaller than 0.5%, 
so the warming-up effect of the samples could be excluded. 
We used an ammeter (Hwa Shin Electronic Works, model 
HS-7017AM, analog type, 0.1 A resolution) and a voltmeter 
(Hwa Shin Electronic Works, model HS-0001, analog type,  
0.1 mV resolution) to measure the current and potential differ­
ence, respectively. The power supply, ammeter and the sample 
were connected in a series circuit using copper wires. The volt­
meter was connected to the sample in parallel. The numerical 
calculations required to solve the van der Pauw relation for the 
value of ν or the resistivity of the sample were performed using 
a C++ implementation of the Newton–Raphson method.

4.  Results for method 1

4.1. Theoretical approach

It can be observed that when the probes are placed far apart 
from each other while conducting the experiment, and when 
the hole in the sample is small enough, it is likely that the con­
dition 2/α β γ δ π= = = =  is met. Numerical calculation 
of ν according to equation (4) shows that for cases where a 
displacement φ is applied as 2 , 2← / ← /α π φ β π φ+ −  or 

2 , 2← / ← /α π φ δ π φ+ − , the value of ν does not change 
significantly (figure 2). This means that value of ν is not sensi­
tive to small changes to the values of , , ,α β γ δ, which are the 
angles between the adjacent probe points after conformally 
mapping the sample into a cylinder. So by simply placing the 
probes to maximize the distance between points when con­
ducting the experiment, the condition 2/α β γ δ π= = = =  
can be used without too much error.

However, the approximation of , , ,α β γ δ values could be 
only used when the value of h, which satisfies the relation 

A Ae h
hole/=− , is large. The relation can be derived from the 

fact that the variable h is defined as R r2 ln /  for the annulus 
while conformally mapping the given sample, and the area 
ratio of the given sample’s hole is approximately equal to 
the area ratio of the annulus when the hole is small enough 
[16, 17]. The value of ν cannot be bigger than 1 no matter 
what the values of , , ,α β γ δ are, so the maximum value of ν 
is always 1. If we decrease the value of h, the minimum value 
of ν (according to equation (4), the ν value is smallest when 

2/α β γ δ π= = = = ) will also decrease. This means that ν 
will be more sensitive to changes in , , ,α β γ δ values when h 
is smaller. So the approximation of 2/α β γ δ π= = = =  can 
only be used when h is big and the hole is small enough.

Setting all angles as 2/π  for equation (4) and assuming that 
the value of h is big enough (which means that the hole is 
small enough) gives ν as:

hn
1

1

cosh
.

n 1

2
⎜ ⎟
⎛
⎝

⎞
⎠∏ν = +

=

∞ −

� (5)

Taking the first-order approximation of equation (5),

1 4e .hν∼ − −� (6)

The linear approximation above should stand for samples 
with a single hole.

Meas. Sci. Technol. 27 (2016) 125001



D Oh et al

4

4.2.  Experimental results

The linear approximation done above is only valid if h is large. 
We recommend using the linear approximation only when 
the area ratio of the holes on the sample is smaller than 0.2, 
which makes the value of h big enough. Figure 3 shows that 
the experimental data fit well to the approximation when the 
area ratio of the hole is smaller than 0.2(R2  =  0.971). While 
numerical calculation of equation  (5) provides higher acc­
uracy throughout the whole range of area ratio values, the 
linear approximation is more computationally efficient.

Also, when we used samples with more than one hole for 
the experiment (figure 4), the ν values of the samples followed 
the same linear approximation (equation (6)) even though the 
approximation was derived for samples with a single hole. 

Figure 3.  Experimental data for the ν values of samples with 
a single hole are compared with the numerical calculation of 
equation (5) and the first-order approximation in the form of 
equation (6). The distances between the probes were maximized 
during the experiment in order to use the approximation 

/α β γ δ π= = = = 2 (equations (5) and (6) both use the 
approximation). The area ratio of the hole was found using edge 
detection and image processing. We can see that equations (5) and 
(6) both provide substantial approximations to the value ν.

Figure 4.  Samples with multiple holes followed the linear 
approximation of equation (6).

Figure 5.  A comparison of the values of ν obtained from aluminum 
and copper sheets for nearly identical samples with nearly identical 
probe locations shows that the differences are within the error 
margins of measurement. The values showed an average error of 
1.42%, always smaller than the error of measurement.

Figure 2.  In the region of φ = 0 small changes to φ do not result in significant changes to ν. In the graph, h  =  2.303, which means that 
/ =A A 0.1hole . The graph was drawn using C++ coding. The value of ν was calculated for every 0.01 rad, from  −1.57 rad to 1.57 rad.  

(a) Displacement to α and β. (b) Displacement to α and δ.

Meas. Sci. Technol. 27 (2016) 125001
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However, using the approximation to samples with multiple 
holes is not recommended because there is no theoretical 
proof that the approximation is applicable for samples with 
multiple holes.

5.  Results for method 2

5.1. Theoretical approach

One can observe that the value of ν is a constant 1 for a sample 
without a hole, and for a sample with an isolated hole the 
value is dependent only on the topological parameters of the 
sample. Thus for two samples with different material proper­
ties but identical geometries and probe points, ν will be the 
same. We investigate whether this holds for all geometries, 
including samples with multiple holes.

The theoretical proof of this is trivial. Samples with the 
same geometry but made of different materials have the same 
boundary conditions. If we supply an identical amount of 
current to the samples with the same geometry, the normal 
derivative of the electric potential function at the two current 
electrodes would be simply scaled by a factor of the given 
sample’s sheet resistance, since the electric potential func­
tion could be seen as a boundary condition problem. So the 
potentials should be scaled by the same factor (assuming an 
identical current density), and the values of RPQ,RS and RQR,SP 
would also be scaled by the value of sheet resistance. Thus, by 
equation (2), the ν values of samples with the same geometry 
are equal. This stands even when the samples have multiple 
holes.

Also, the eligibility of method 2 can be proven by weighting 
and sensitivity functions.

5.2.  Experimental results

Comparison between copper and aluminum sheets shows that 
the value of ν is similar for both, with differences falling within 
the error rate (figure 5). Most of the error is believed to be a 
result of errors in the measurement process and slight devia­
tions in the location of probes—errors that can be improved in 
a more advanced experimental setting. By scanning a sample 
with an unknown resistivity and making an identical (the 
thickness of the two samples could be different, but must be 
known) sample of known resistivity, we can measure the value 
of ν and use this value to apply the modified van der Pauw 
relation to the unknown sample, thus obtaining the sheet resis­
tivity of the original sample.

6.  Usage of methods 1 and 2

To verify the two methods, we used the two methods that 
we have proposed to obtain the resistivity of random sam­
ples made with 0.1 mm thick aluminum sheets (figure 6). 
The experimental setup introduced earlier was used to con­
duct the experiment. We used the linear approximation  
(equation (6)) to calculate the resistivity of the given samples 
with method 1. For method 2, we made another sample which 
had the same geometry as the given sample, using copper 
sheets. We used the copper sample to obtain the ν value of 
the given sample. The results using both methods 1 and 2 are 
shown in the table in figure 6. For the samples with a small 
single hole (A A 0.2hole/ < , samples 1–5), methods 1 and 2 
were both used; method 2 was used for samples with a big 
single hole (A A 0.2hole/ > , sample 6) and samples with mul­
tiple holes (samples 7–9).

Figure 6.  Experimental resistivity values of the nine given samples obtained with methods 1 and 2. Method 1 was used to obtain the 
resistivity values of the samples with a single hole, and method 2 was used for all samples. The error rate of both methods was small 
enough for the actual use of the methods.

Meas. Sci. Technol. 27 (2016) 125001
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The results experimentally confirm the two methods pro­
posed in this paper. The second method shows very small 
error rates for samples with one or more holes, and the first 
method shows acceptable error rates for samples with a 
single hole. The error rates of the first method always have 
a negative value, which is because the value of ν is a min­
imum when 2/α β γ δ π= = = =  [12]. The error rates of 
the second method were not biased. While use of the second 
method will allow researchers to obtain more accurate resis­
tivity values of samples with multiple holes, use of the first 
method for samples with a single hole takes much less time 
and work.

7.  Conclusion and discussion

In this research, we generalized the van der Pauw method for 
samples of various geometries and proposed two methods for 
obtaining ν, which is a crucial factor for calculating the sheet 
resistivity of a sample. The first method involved setting the 
probes far from each other while conducting the experiment 
using a sample with a small hole, approximating a relation that 
gives ν as a linear function of the area ratio of the hole only. 
The second method involved the use of an identical sample of 
known specific resistivity and thickness to obtain ν, which is 
believed to be dependent on geometrical properties only. Both 
methods have been confirmed experimentally.

The novelty of the work is in the methods of approxi­
mating the value of ν of a given sample with unknown sheet 
resistivity. Using the first method we can approximate ν for a 
sample with a single hole using a linear relation of the area 
ratio of the hole. The approximation stands regardless sam­
ple’s geometry if the area of the hole is less than 20% of the 
area of the sample. Unlike the existing methods, which require 
very complex procedures, the new method needs very little 
computation. The only factor we need to know is the area ratio 
of the hole, and this could be easily obtained by many means 
such as image processing a photograph of the given sample. 
Also, the first method could be very useful in electronics 
industries such as semiconductor production. Engineers often 
need to measure the sheet resistivity of various samples with 
pinholes, scratches or holes for the circuits when producing 
semiconductor parts. In this case, the hole in the sample would 
be small enough, so instead of dividing the sample into parts 
and applying the traditional van der Pauw relation, we can 
just use the approximation of method 1. This will save a lot 
of time and effort, but the acquired data will still be accu­
rate. And if the holes on the sample are too big to use the 
first method (which is not very likely when conducting real-
life experiments), or if there are multiple holes in the sample, 
method 2 can be used instead. We believe that these methods 
will increase the efficiency of the measurements of sheet resis­
tivity of various samples.

We observed that the ν values of the samples with more 
than one hole also follow a linear approximation (equation 
(6)) during experiments using method 1 (figure 4). We are 
currently working to find a theoretical proof that the approx­
imation is applicable to samples with multiple holes.
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