Algebraic generating functions for languages avoiding Riordan patterns

Donatella Merlini Massimo Nocentini

Dipartimento di Statistica, Informatica, Applicazioni University of Florence, Italy

> February 20, 2017 AORC2017

Outline

- 1 Introduction
- 2 Binary words avoiding patterns
- 3 Riordan patterns
- 4 The $|w|_0 \le |w|_1$ constraint
- 5 Series developments and closed formulae

Outline

- 1 Introduction
- 2 Binary words avoiding patterns
- 3 Riordan patterns
- 4 The $|w|_0 \le |w|_1$ constraint
- 5 Series developments and closed formulae

Definition in terms of d(t) and h(t)

• A Riordan array is a pair

$$D=\mathcal{R}(d(t),\ h(t))$$

in which d(t) and h(t) are formal power series such that $d(0) \neq 0$ and h(0) = 0

- if $h'(0) \neq 0$ the Riordan array is called *proper*
- it denotes an infinite, lower triangular array $(d_{n,k})_{n,k\in N}$ where:

$$d_{n,k} = [t^n]d(t)h(t)^k$$

The A and Z sequences

An alternative definition, is in terms of the so-called A-sequence and Z-sequence, with generating functions A(t) and Z(t) satisfying the relations:

$$\begin{split} h(t) &= t A(h(t)), \quad d(t) = \frac{d_0}{1 - t Z(h(t))} \quad \text{with} \quad d_0 = d(0). \\ \\ d_{n+1,k+1} &= a_0 d_{n,k} + a_1 d_{n,k+1} + a_2 d_{n,k+2} + \cdots \\ \\ d_{n+1,0} &= z_0 d_{n,0} + z_1 d_{n,1} + z_2 d_{n,2} + \cdots \end{split}$$

The A-matrix [MSRV97]

$$d_{n+1,k+1} = \sum_{i \geq 0} \sum_{j \geq 0} \alpha_{i,j} d_{n-i,k+j} + \sum_{j \geq 0} \rho_j d_{n+1,k+j+2}$$

Matrix $(\alpha_{i,j})_{i,j\in\mathbb{N}}$ is called the A-matrix of the Riordan array. If, for i>0 :

$$P^{[i]}(t) = \alpha_{i,0} + \alpha_{i,1}t + \alpha_{i,2}t^2 + \alpha_{i,3}t^3 + \dots$$

and Q(t) is the generating function for the sequence $(\rho_j)_{j\in\mathbb{N}}$, then we have:

$$\frac{h(t)}{t} = \sum_{i>0} t^i P^{[i]}(h(t)) + \frac{h(t)^2}{t} Q(h(t))$$

$$A(t) = \sum_{i>0} t^i A(t)^{-i} P^{[i]}(t) + t A(t) Q(t)$$

Outline

- 1 Introduction
- 2 Binary words avoiding patterns
- 3 Riordan patterns
- 4 The $|w|_0 \le |w|_1$ constraint
- 5 Series developments and closed formulae

Binary words avoiding a pattern

- We consider the language $\mathcal{L}^{[p]}$ of binary words with no occurrence of a pattern $\mathfrak{p}=\mathfrak{p}_0\cdots\mathfrak{p}_{h-1}$
- The problem of determining the generating function counting the number of words with respect to their length has been studied by several authors:
 - 1 L. J. Guibas and M. Odlyzko. Long repetitive patterns in random sequences. *Zeitschrift für Wahrscheinlichkeitstheorie*, 53:241–262, 1980.
 - 2 R. Sedgewick and P. Flajolet. *An Introduction to the Analysis of Algorithms*. Addison-Wesley, Reading, MA, 1996.
- The fundamental notion is that of the autocorrelation vector of bits $c = (c_0, ..., c_{h-1})$ associated to a given \mathfrak{p}

The pattern $\mathfrak{p} = 10101$

1	0	1	0	1	Tails					c_i
1	0	1	0	1						1
	1	0	1	0	1					0
		1	0	1	0	1				1
			1	0	1	0	1			0
				1 0 1	0	1	0	1		1

The autocorrelation vector is then c=(1,0,1,0,1) and $C^{[\mathfrak{p}]}(t)=1+t^2+t^4$ is the associated autocorrelation polynomial

Count respect bits 1 and 0

The gf counting the number F_n of binary words with length $\mathfrak n$ not containing the pattern $\mathfrak p$ is

$$F(t) = \frac{C^{[p]}(t)}{t^{h} + (1 - 2t)C^{[p]}(t)}$$

Taking into account the number of bits 1 and 0 in \mathfrak{p} :

$$F^{[p]}(x,y) = \frac{C^{[p]}(x,y)}{x^{n_1^{[p]}}y^{n_0^{[p]}} + (1-x-y)C^{[p]}(x,y)}$$

where $h=n_0^{[\mathfrak{p}]}+n_1^{[\mathfrak{p}]}$ and $C^{[\mathfrak{p}]}(x,y)$ is the bivariate autocorrelation polynomial. Moreover, $F_{n,k}^{[\mathfrak{p}]}=[x^ny^k]F^{[\mathfrak{p}]}(x,y)$ denotes the number of binary words avoiding the pattern \mathfrak{p} with n bits 1 and k bits 0

An example with $\mathfrak{p} = 10101$

Since $C^{[p]}(x, y) = 1 + xy + x^2y^2$ we have:

$$F^{[p]}(x,y) = \frac{1 + xy + x^2y^2}{(1 - x - y)(1 + xy + x^2y^2) + x^3y^2}.$$

n/k	0	1	2	3	4	5	6	7 8 36 114 293 654 1324 2490
0	1	1	1	1	1	1	1	1
1	1	2	3	4	5	6	7	8
2	1	3	6	10	15	21	28	36
3	1	4	9	18	32	52	79	114
4	1	5	13	30	60	109	184	293
5	1	6	18	46	102	204	377	654
6	1	7	24	67	163	354	708	1324
7	1	8	31	94	248	580	1245	2490

...the lower and upper triangular parts

n/k	0	1	2	3	4	5		n/k	0	1	2	3	4	5
0	1							0	1					
1	2	1						1	2	1				
2	6	3	1					2	6	3	1			
3	18	9	4	1				3	18	10	4	1		
4	60	30	13	5	1			4	60	32	15	5	1	
5	204	102	46	18	6	1		5	204	109	52	21	6	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														

$$(\mathfrak{n},k)\mapsto (\mathfrak{n},\mathfrak{n}-k) \text{ if } k\leq \mathfrak{n} \qquad \qquad (\mathfrak{n},k)\mapsto (k,k-\mathfrak{n}) \text{ if } \mathfrak{n}\leq k$$

Matrices $R^{[p]}$ and $R^{[p]}$

- Let $R_{n,k}^{[p]} = F_{n,n-k}^{[p]}$ with $k \le n$. In other words, $R_{n,k}^{[p]}$ counts the number of words avoiding $\mathfrak p$ with n bits 1 and n-k bits 0
- Let $\bar{\mathfrak p}=\bar{p}_0\dots\bar{p}_{h-1}$ be the $\mathfrak p$'s conjugate, where $\bar{p}_i=1-p_i$
- We obviously have $R_{n,k}^{[\bar{p}]} = F_{n,n-k}^{[\bar{p}]} = F_{k,k-n}^{[p]}$. Therefore, the matrices $R^{[p]}$ and $R^{[\bar{p}]}$ represent the lower and upper triangular part of the array $F^{[p]}$, respectively

Outline

- 1 Introduction
- 2 Binary words avoiding patterns
- 3 Riordan patterns
- 4 The $|w|_0 \le |w|_1$ constraint
- 5 Series developments and closed formulae

Riordan patterns [MS11]

- When matrices $R^{[p]}$ and $R^{[p]}$ are (both) Riordan arrays?
- We say that $\mathfrak{p}=\mathfrak{p}_0...\mathfrak{p}_{h-1}$ is a Riordan pattern if and only if

$$C^{[\mathfrak{p}]}(x,y)=C^{[\mathfrak{p}]}(y,x)=\sum_{i=0}^{\lfloor (h-1)/2\rfloor}c_{2i}x^iy^i$$

provided that
$$\left|n_1^{[\mathfrak{p}]} - n_0^{[\mathfrak{p}]}\right| \in \{0, 1\}$$

 D. Merlini and R. Sprugnoli. Algebraic aspects of some Riordan arrays related to binary words avoiding a pattern. *Theoretical Computer Science*, 412 (27), 2988-3001, 2011.

Theorem 1

Matrices

$$R^{[p]} = (d^{[p]}(t), h^{[p]}(t)), \quad R^{[\bar{p}]} = (d^{[\bar{p}]}(t), h^{[\bar{p}]}(t))$$

are both RAs $\leftrightarrow \mathfrak{p}$ is a Riordan pattern.

By specializing this result to the cases $\left|n_1^{[\mathfrak{p}]}-n_0^{[\mathfrak{p}]}\right|\in\{0,1\}$ and by setting $C^{[\mathfrak{p}]}(t)=C^{[\mathfrak{p}]}\left(\sqrt{t},\sqrt{t}\right)=\sum_{i\geq 0}c_{2i}t^i,$ we have

Theorem 1: the case $n_1^{[\mathfrak{p}]}-n_0^{[\mathfrak{p}]}=1$

$$\begin{split} d^{[\mathfrak{p}]}(t) &= \frac{C^{[\mathfrak{p}]}(t)}{\sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{\mathfrak{n}_0^{\mathfrak{p}}})}}, \\ h^{[\mathfrak{p}]}(t) &= \frac{C^{[\mathfrak{p}]}(t) - \sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{\mathfrak{n}_0^{\mathfrak{p}}})}}{2C^{[\mathfrak{p}]}(t)}. \end{split}$$

Theorem 1: the case $n_1^{[p]} - n_0^{[p]} = 0$

$$\begin{split} d^{[\mathfrak{p}]}(t) &= \frac{C^{[\mathfrak{p}]}(t)}{\sqrt{(C^{[\mathfrak{p}]}(t) + t^{\mathfrak{n}^{\mathfrak{p}}_{0}})^{2} - 4tC^{[\mathfrak{p}]}(t)^{2}}}, \\ h^{[\mathfrak{p}]}(t) &= \frac{C^{[\mathfrak{p}]}(t) + t^{\mathfrak{n}^{\mathfrak{p}}_{0}} - \sqrt{(C^{[\mathfrak{p}]}(t) + t^{\mathfrak{n}^{\mathfrak{p}}_{0}})^{2} - 4tC^{[\mathfrak{p}]}(t)^{2}}}{2C^{[\mathfrak{p}]}(t)}. \end{split}$$

Theorem 1: the case $n_0^{[\mathfrak{p}]} - n_1^{[\mathfrak{p}]} = 1$

$$\begin{split} d^{[\mathfrak{p}]}(t) &= \frac{C^{[\mathfrak{p}]}(t)}{\sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{\mathfrak{n}_1^{\mathfrak{p}}})}}, \\ h^{[\mathfrak{p}]}(t) &= \frac{C^{[\mathfrak{p}]}(t) - \sqrt{C^{[\mathfrak{p}]}(t)^2 - 4tC^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{\mathfrak{n}_1^{\mathfrak{p}}})}}{2(C^{[\mathfrak{p}]}(t) - t^{\mathfrak{n}_1^{\mathfrak{p}}})}. \end{split}$$

Formulae for classes of patterns

•
$$p = 1^{j+1}0^{j}$$

$$d^{[\mathfrak{p}]}(t) = \frac{1}{\sqrt{1 - 4t + 4t^{j+1}}}, \quad h^{[\mathfrak{p}]}(t) = \frac{1 - \sqrt{1 - 4t + 4t^{j+1}}}{2}$$

• $p = 0^{j+1}1^j$

$$d^{[\mathfrak{p}]}(t) = \frac{1}{\sqrt{1 - 4t + 4t^{j+1}}}, \quad h^{[\mathfrak{p}]}(t) = \frac{1 - \sqrt{1 - 4t + 4t^{j+1}}}{2(1 - t^j)}$$

• $\mathfrak{p} = 1^{\mathfrak{j}}0^{\mathfrak{j}}$ and $\mathfrak{p} = 0^{\mathfrak{j}}1^{\mathfrak{j}}$

$$d^{[\mathfrak{p}]}(t) = \frac{1}{\sqrt{1-4t+2t^j+t^{2j}}}, \quad h^{[\mathfrak{p}]}(t) = \frac{1+t^j-\sqrt{1-4t+2t^j+t^{2j}}}{2}$$

Formulae for classes of patterns

• $\mathfrak{p} = (10)^{\mathfrak{j}} 1$

$$\begin{split} d^{[p]}(t) &= \frac{\sum_{i=0}^{j} t^{i}}{\sqrt{1 - 2\sum_{i=1}^{j} t^{i} - 3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}, \\ h^{[p]}(t) &= \frac{\sum_{i=0}^{j} t^{i} - \sqrt{1 - 2\sum_{i=1}^{j} t^{i} - 3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}{2\sum_{i=0}^{j} t^{i}} \end{split}$$

• $\mathfrak{p} = (01)^{\mathfrak{j}}0$

$$\begin{split} d^{[p]}(t) &= \frac{\sum_{i=0}^{j} t^{i}}{\sqrt{1 - 2\sum_{i=1}^{j} t^{i} - 3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}, \\ h^{[p]}(t) &= \frac{\sum_{i=0}^{j} t^{i} - \sqrt{1 - 2\sum_{i=1}^{j} t^{i} - 3\left(\sum_{i=1}^{j} t^{i}\right)^{2}}}{2\sum_{i=0}^{j-1} t^{i}} \end{split}$$

A combinatorial interpretation for $\mathfrak{p}=10$

In this case we get the RA $\mathcal{R}^{[10]} = \left(d^{[10]}(t), h^{[10]}(t)\right)$ such that

$$d^{[10]}(t) = \frac{1}{1-t}$$
 and $h^{[10]}(t) = t$,

so the number $R_{n,0}^{[10]}$ of words containing n bits 1 and n bits 0, avoiding pattern $\mathfrak{p}=10$, is $[t^n]d^{[10]}(t)=1$ for $n\in\mathbb{N}$. In terms of lattice paths this corresponds to the fact that there is exactly one *valley*-shaped path having n steps of both kinds \nearrow and \searrow , avoiding $\mathfrak{p}=10$ and terminating at coordinate (2n,0) for each $n\in\mathbb{N}$, formally the path 0^n1^n .

Outline

- 1 Introduction
- Binary words avoiding patterns
- 3 Riordan patterns
- 4 The $|w|_0 \le |w|_1$ constraint
- 5 Series developments and closed formulae

The $|w|_0 \le |w|_1$ constraint

- let $|w|_i$ be the number of bits i in word w
- enumeration of binary words avoiding a pattern \mathfrak{p} , without the constraint $|w|_0 \leq |w|_1$, gives a rational bivariate generating function for the sequence $F_n^{[\mathfrak{p}]} = \sum_{k=0}^n F_{n,k}^{[\mathfrak{p}]}$
- under the restriction such that words have to have no more bits 0 than bits 1, then the language is no longer regular and its enumeration becomes more difficult
- using gf $R^{[p]}(x,y)$ and the fundamental theorem of RAs:

$$\sum_{k=0}^{n} d_{n,k} f_k = [t^n] d(t) f(h(t))$$

we obtain many **new algebraic generating functions** expressed in terms of the autocorrelation polynomial of p

Theorem 2: the case $n_1^{[\mathfrak{p}]} - n_0^{[\mathfrak{p}]} = 1$

Recall that

$$R^{[p]}(t, w) = \sum_{n, k \in \mathbb{N}} R_{n, k}^{[p]} t^n w^k = \frac{d^{[p]}(t)}{1 - w h^{[p]}(t)}$$

Let $S^{[p]}(t) = \sum_{n \geq 0} S_n^{[p]} t^n$ be the gf enumerating the set of binary words $\left\{ w \in \mathcal{L}^{[p]} : |w|_0 \leq |w|_1 \right\}$ according to the number of bits 1

• if $n_1^{[p]} = n_0^{[p]} + 1$:

$$S^{[\mathfrak{p}]}(t) = \frac{2C^{[\mathfrak{p}]}(t)}{\sqrt{Q(t)} \left(\sqrt{C^{[\mathfrak{p}]}(t)} + \sqrt{Q(t)} \right)}$$

where
$$Q(t) = (1 - 4t)C^{[p]}(t)^2 + 4t^{n_1^{[p]}}$$

Theorem 2: the case $n_0^{[\mathfrak{p}]} - n_1^{[\mathfrak{p}]} = 1$

• if
$$n_0^{[p]} = n_1^{[p]} + 1$$
:

$$S^{[\mathfrak{p}]}(t) = \frac{2C^{[\mathfrak{p}]}(t)(C^{[\mathfrak{p}]}(t) - t^{\mathfrak{n}_1^{[\mathfrak{p}]}})}{\sqrt{Q(t)}\left(C^{[\mathfrak{p}]}(t) - 2t^{\mathfrak{n}_1^{[\mathfrak{p}]}} + \sqrt{Q(t)}\right)}$$

where
$$Q(t) = (1 - 4t)C^{[p]}(t)^2 + 4t^{n_0^{[p]}}C^{[p]}(t)$$

Theorem 2: the case $n_0^{[\mathfrak{p}]}-n_1^{[\mathfrak{p}]}=0$

• if
$$\mathfrak{n}_1^{[\mathfrak{p}]}=\mathfrak{n}_0^{[\mathfrak{p}]}$$
 :

$$S^{[\mathfrak{p}]}(t) = \frac{2C^{[\mathfrak{p}]}(t)^2}{\sqrt{Q(t)} \left(C^{[\mathfrak{p}]}(t) - t^{\mathfrak{n}_0^{[\mathfrak{p}]}} + \sqrt{Q(t)}\right)}$$

where
$$Q(t) = (1 - 4t)C^{[\mathfrak{p}]}(t)^2 + 2t^{n_0^{[\mathfrak{p}]}}C^{[\mathfrak{p}]}(t) + t^{2n_0^{[\mathfrak{p}]}}$$

Proof.

Observe that
$$S_n^{[\mathfrak{p}]}(t)=R^{[\mathfrak{p}]}(t,1),$$
 or, equivalently, that $S_n^{[\mathfrak{p}]}=\sum_{k=0}^n R_{n,k}^{[\mathfrak{p}]}$ and apply the fundamental rule with $f_k=1$.

Theorem 3: the case $n_1^{[\mathfrak{p}]} - n_0^{[\mathfrak{p}]} = 1$

Let $L^{[p]}(t) = \sum_{n \geq 0} L_n^{[p]} t^n$ be the gf enumerating the set of binary words $\left\{ w \in \mathcal{L}^{[p]} : |w|_0 \leq |w|_1 \right\}$ according to the length

• if $n_1^{[p]} = n_0^{[p]} + 1$:

$$L^{[\mathfrak{p}]}(t) = \frac{2tC^{[\mathfrak{p}]}(t^2)^2}{\sqrt{Q(t)}\left((2t-1)C(t^2) + \sqrt{Q(t)}\right)}$$

where
$$Q(t) = C^{[p]}(t^2) \left((1 - 4t^2) C^{[p]}(t^2) + 4t^{2n_1^{[p]}} \right)$$

Theorem 3: the case $n_0^{[\mathfrak{p}]} - n_1^{[\mathfrak{p}]} = 1$

• if $n_0^{[p]} = n_1^{[p]} + 1$:

$$L^{[\mathfrak{p}]}(t) = \frac{2t\sqrt{C^{[\mathfrak{p}]}(t^2)}(t^{2n_1^{[\mathfrak{p}]}} - C^{[\mathfrak{p}]}(t^2))}{\sqrt{Q(t)}\left((1-2t)C^{[\mathfrak{p}]}(t^2) + B(t) - \sqrt{C^{[\mathfrak{p}]}(t^2)Q(t)}\right)}$$

where
$$Q(t)=(1-4t^2)C^{[p]}(t^2)+4t^{2n_0^{[p]}}$$
 and $B(t)=2t^{n_0^{[p]}+n_1^{[p]}}$

Theorem 3: the case $n_1^{[\mathfrak{p}]}-n_0^{[\mathfrak{p}]}=0$

• if $n_1^{[\mathfrak{p}]} = n_0^{[\mathfrak{p}]}$:

$$L^{[\mathfrak{p}]}(t) = \frac{2tC^{[\mathfrak{p}]}(t^2)^2}{\sqrt{Q(t)}\left((2t-1)C(t^2) - t^{2n_0^{[\mathfrak{p}]}} + \sqrt{Q(t)}\right)}$$

where
$$Q(t) = (1 - 4t^2)C^{[\mathfrak{p}]}(t^2)^2 + 2t^{2n_0^{[\mathfrak{p}]}}C^{[\mathfrak{p}]}(t^2) + t^{4n_0^{[\mathfrak{p}]}}$$

Theorem 3: proof

Proof.

Observe that the application of generating function $R^{[\mathfrak{p}]}(t,w)$ as

$$R^{[p]}\left(tw, \frac{1}{w}\right) = \sum_{n,k \in \mathbb{N}} R_{n,k}^{[p]} t^n w^{n-k}$$

entails that $[t^r w^s] R^{[\mathfrak{p}]} \left(tw, \frac{1}{w}\right) = R^{[\mathfrak{p}]}_{r,r-s}$ which is the number of binary words with r bits 1 and s bits 0. To enumerate according to the length let t=w, therefore

$$L^{[p]}(t) = \sum_{n \ge 0} L_n^{[p]} t^n = R^{[p]} \left(t^2, \frac{1}{t} \right)$$

 \neg

Outline

- 1 Introduction
- Binary words avoiding patterns
- 3 Riordan patterns
- 4 The $|w|_0 \le |w|_1$ constraint
- 5 Series developments and closed formulae

Formulae for classes of patterns

• for $\mathfrak{p} = 1^{\mathfrak{j}+1}0^{\mathfrak{j}}$ we have:

$$S^{[p]}(t) = \frac{2}{\sqrt{Q(t)} \left(1 + \sqrt{Q(t)}\right)}, \quad Q(t) = 1 - 4t + 4t^{j+1}$$

• for $\mathfrak{p} = 0^{j+1}1^j$ we have:

$$S^{[\mathfrak{p}]}(t) = \frac{2(1-t^{j})}{\sqrt{Q(t)}\left(1-2t^{j}+\sqrt{Q(t)}\right)}, \quad Q(t) = 1-4t+4t^{j+1}$$

• for $\mathfrak{p} = 1^{\mathfrak{j}}0^{\mathfrak{j}}$ and $\mathfrak{p} = 0^{\mathfrak{j}}1^{\mathfrak{j}}$ we have:

$$S^{[\mathfrak{p}]}(t) = \frac{2}{\sqrt{Q(t)} \left(1 - t^{j} + \sqrt{Q(t)}\right)}, \quad Q(t) = 1 - 4t + 2t^{j} + t^{2j}$$

Formulae for classes of patterns

• for $p = (10)^{j}1$ we have:

$$S^{[\mathfrak{p}]}(t) = \frac{2(1-t^{j+1})}{1-4t+3t^{j+1}+\sqrt{Q(t)}}$$

where
$$Q(t) = 1 - 4t + 2t^{j+1} + 4t^{j+2} - 3t^{2j+2}$$

• for $p = (01)^{j}0$ we have:

$$S^{[\mathfrak{p}]}(t) = \frac{2(1 - t^{\mathfrak{j}} - t^{\mathfrak{j}+1} + t^{2\mathfrak{j}+1})}{\sqrt{Q(t)} \left(1 - 2t^{\mathfrak{j}} + t^{\mathfrak{j}+1} + \sqrt{Q(t)}\right)}$$

where
$$Q(t) = 1 - 4t + 2t^{j+1} + 4t^{j+2} - 3t^{2j+2}$$

Series development for $S^{[1^{j+1}0^j]}(t)$

j/n	0	1	2	3	4	5	6	7	8	9	10	11
0	1	0	0	0	0	0	0	0	0	0	0	0
1	1	3	7	15	31	63	127	255	511	1023	2047	4095
2	1	3	10	32	106	357	1222	4230	14770	51918	183472	651191
3	1	3	10	35	123	442	1611	5931	22010	82187	308427	1162218
4	1	3	10	35	126	459	1696	6330	23806	90068	342430	1307138
5	1	3	10	35	126	462	1713	6415	24205	91874	350406	1341782
6	1	3	10	35	126	462	1716	6432	24290	92273	352212	1349768
7	1	3	10	35	126	462	1716	6435	24307	92358	352611	1351574
8	1	3	10	35	126	462	1716	6435	24310	92375	352696	1351973

$$[t^3] S^{\hbox{\scriptsize [110]}}(t) = \big| \{111,0111,1011,00111,01011,10011,10101,000111,\\ 001011,010011,01011,100011,100101,101001,101010] \big| = 15$$

Table: Some series developments for $S^{[1^{j+1}0^j]}(t)$ and the set of words with n=3 bits 1, avoiding pattern $\mathfrak{p}=110$, so j=1 in the family; moreover, for j=1 the sequence corresponds to A000225, for j=2 the sequence corresponds to A261058.

formulae for classes of patterns

• for $\mathfrak{p} = 1^{j+1}0^j$ we have:

$$L^{[\mathfrak{p}]}(t) = \frac{2t}{\sqrt{Q(t)} \left(2t - 1 + \sqrt{Q(t)}\right)}, \quad Q(t) = 1 - 4t^2 + 4t^{2(\mathfrak{j}+1)}$$

• for $\mathfrak{p} = 0^{j+1}1^j$ we have:

$$L^{[\mathfrak{p}]}(t) = \frac{2t(t^{2\mathfrak{j}}-1)}{\sqrt{Q(t)}\left(1-2t+2t^{2\mathfrak{j}+1}-\sqrt{Q(t)}\right)}, \quad Q(t) = 1-4t^2+4t^{2(\mathfrak{j}+1)}$$

• for $\mathfrak{p} = 1^{\mathfrak{j}}0^{\mathfrak{j}}$ and $\mathfrak{p} = 0^{\mathfrak{j}}1^{\mathfrak{j}}$ we have:

$$L^{[\mathfrak{p}]}(t) = \frac{2t}{\sqrt{Q(t)} \left(-1 + 2t - t^{2j} + \sqrt{Q(t)}\right)}, \quad Q(t) = 1 - 4t^2 + 2t^{2j} + t^{4j}$$

formulae for classes of patterns

• for $p = (10)^{j}1$ we have:

$$L^{[\mathfrak{p}]}(t) = \frac{2t(t^{2j+2}-1)}{1-4t^2+3t^{2j+2}+(2t-1)\sqrt{Q(t)}}$$

where
$$Q(t) = 1 - 4t^2 + 2t^{2j+2} + 4t^{2j+4} - 3t^{4j+4}$$

• for $\mathfrak{p} = (01)^{\mathfrak{j}}0$ we have:

$$L^{[\mathfrak{p}]}(t) = \frac{2t(t^{2j+2}-1)(t^{2j}-1)}{\sqrt{Q(t)}\left(t^{2j+2}-2t^{2j+1}+2t-1+\sqrt{Q(t)}\right)}$$

where
$$Q(t) = 1 - 4t^2 + 2t^{2j+2} + 4t^{2j+4} - 3t^{4j+4}$$

Series development for $L^{[1^{j+1}0^j]}(t)$

j/n	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	3	3	7	7	15	15	31	31	63	63	127	127	255
2	1	1	3	4	11	15	38	55	135	201	483	736	1742	2699	6313
3	1	1	3	4	11	16	42	63	159	247	610	969	2354	3802	9117
4	1	1	3	4	11	16	42	64	163	255	634	1015	2482	4041	9752
5	1	1	3	4	11	16	42	64	163	256	638	1023	2506	4087	9880
6	1	1	3	4	11	16	42	64	163	256	638	1024	2510	4095	9904
7	1	1	3	4	11	16	42	64	163	256	638	1024	2510	4096	9908

Table: Some series developments for $L^{[1^{j+1}0^j]}(t)$; moreover, for j=1 the sequence corresponds to A052551.

Closed formulae for particular cases

When the parameter j for a pattern p assumes values 0 and 1 it is possible to find closed formulae for coefficients $S_n^{[p]}$ and $L_n^{[p]}$; moreover, in a recent submitted paper we give combinatorial interpretations, in terms of inversions in words and boxes occupancy, too.

$$S_n^{[p]}$$

Closed formulae for particular cases

 $L_{2m}^{[\mathfrak{p}]}$

$$L_{2m+1}^{[\mathfrak{p}]}$$

Summary

Key points

- split F(t) in $F^{[p]}(x,y)$ to account for bits 1 and 0
- $R^{[p]}$ and $R^{[\bar{p}]}$ are both RA $\leftrightarrow \mathfrak{p}$ is a Riordan pattern.
- requiring $|w|_0 \le |w|_1$ entails

$$\begin{split} S^{[\mathfrak{p}]}(t) &= R^{[\mathfrak{p}]}(t,1) \to [t^n] S^{[\mathfrak{p}]}(t) = \left| \left\{ w \in \mathcal{L}^{[\mathfrak{p}]} : \begin{array}{l} |w|_1 = n \\ |w|_0 \le |w|_1 \end{array} \right\} \right| \\ L^{[\mathfrak{p}]}(t) &= R^{[\mathfrak{p}]}\left(t^2, \frac{1}{t}\right) \to [t^n] L^{[\mathfrak{p}]}(t) = \left| \left\{ w \in \mathcal{L}^{[\mathfrak{p}]} : \begin{array}{l} |w| = n \\ |w|_0 \le |w|_1 \end{array} \right\} \right| \end{split}$$

Outlook

- provide combinatorial interpretations for both pattern classes $(10)^j 1$ and $(01)^j 0$, at least for $j \in \{0, 1\}$
- conjecture: when j > 1 in pattern classes it seems that $R^{[p]}$ is a binomial transformation
- build the Riordan graph for both RAs $R^{[p]}$ and $R^{[\bar{p}]}$ to study the meaning of pattern avoidance at graph level

고맙습니다