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Motivating example 1
Permutations that avoid the consecutive pattern 123 are counted by a
sequence that begins

1, 1, 2, 5, 17, 70, 349, 2017, 13358, 99377, 822041, . . .

which has an exponential generating function given by

√
3

2 ex/2

cos
(√

3x
2 + π

6

) .
These numbers are the moments associated to a family of orthogonal
polynomials whose coefficient array is given by the exponential Riordan
array  √

3
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.
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The Riordan array √
3

2 ex/2

cos
(√

3x
2 + π

6

) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2


begins 

1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
5 12 6 1 0 0 0

17 53 39 10 1 0 0
70 279 260 95 15 1 0

349 1668 1914 880 195 21 1


.
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We have  √
3

2 ex/2

cos
(√

3x
2 + π

6

) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2

−1

=

e π
6
√

3
− 1√

3
tan−1

(
1+2x√

3

)
√

1 + x + x2
,

2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3

 .
This begins 

1 0 0 0 0 0 0
−1 1 0 0 0 0 0
1 −3 1 0 0 0 0
1 6 −6 1 0 0 0
−13 4 21 −10 1 0 0
49 −129 −5 55 −15 1 0
31 723 −624 −85 120 −21 1


.
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Motivating example 2
The production matrix of the exponential Riordan array √

3
2 ex/2

cos
(√

3x
2 + π

6

) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2


begins 

1 1 0 0 0 0
1 2 1 0 0 0
0 4 3 1 0 0
0 0 9 4 1 0
0 0 0 16 5 1
0 0 0 0 25 6

 .

The corresponding family of orthogonal polynomials satisfies the
three-term recurrence

Pn(x) = Pn(x) = (x − n)Pn−1(x)− (n − 1)2Pn−2(x),

with P0(x) = 1,P1(x) = x − 1.
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Motivating example 3

The ordinary generating function of the moments 1, 1, 2, 5, 17, . . . may be
expressed as the continued fraction

1

1− x −
x2

1− 2x −
4x2

1− 3x −
9x2

1− 4x − · · ·

.

The Hankel transform of the moments 1, 1, 2, 5, 17, . . . is given by

hn =
n∏

k=0

(k + 1)2(n−k) =
n∏

k=0

k!2.
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The sequence

1, 1, 2, 5, 17, 70, 349, 2017, 13358, 99377, 822041, . . .

is sequence A049774 in the On-Line Encyclopedia of Integer
Sequences, created and maintained by Neil Sloane, available at oeis.org.

The sequence hn = 1, 1, 4, 144, 82944, . . . is A055209.
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Motivating example 4

The (n, k)-th element of the related exponential Riordan array[
3

2
(
cos
(√

3x + π
3

)) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2

]

counts k forests of planar increasing unary-binary trees with n nodes. Its
inverse is the coefficient array of the family of orthogonal polynomials

Pn(x) = (x − n)Pn−1(x)− n(n − 1)Pn−2(x),

with P0(x) = 1,P1(x) = x − 1.
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Motivating example 5

If an is a given sequence, its binomial transform is the sequence

bn =
n∑

k=0

(
n

k

)
ak .

If A(x) is the ordinary generating function of an, then B(x) is given by

B(x) =
1

1− x
A

(
x

1− x

)
=

(
1

1− x
,

x

1− x

)
· A(x).

If Ae(x) is the exponential generating function of an, then

Be(x) = exA(x) = [ex , x ] .A(x).

The Hankel transform of an and bn are the same.
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Preliminaries on orthogonal polynomials
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Figure: Pafnuty Chebyshev (1821 - 1894)
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Orthogonal polynomials

Let Pn(x) be a sequence of polynomials that obey a three-term recurrence

Pn+1(x) = (x − αn)Pn(x)− βnPn−1(x),

with β0P−1(x) = 0 and P0(x) = 1. Then Pn(x) is a family of (monic)
orthogonal polynomials. We have∫

PnPmd µ(x) = δmn,

for an appropriate measure µ(x). Letting an =
∫
xndµ(x) then, for

instance,

P2(x) =

∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

1 x x2

∣∣∣∣∣∣ /
∣∣∣∣a0 a1

a1 a2

∣∣∣∣ = h2(x)/h1
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tau-function

We have

βn =
hn−1hn+1

h2
n

and

αn =
h∗n+1

hn+1
− h∗n

hn
,

where for instance

h∗2 =

∣∣∣∣∣∣
a0 a1 a3

a1 a2 a4

a2 a3 a5

∣∣∣∣∣∣ .
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Figure: Thomas Joannes Stieltjes (1856-1894)
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Moments and weight function
The generating function gµ(x) of the moments µn can be obtained by

gµ(x) =

∫ ∞
−∞

dµ(z)

1− xz
.

(Stieltjes or Cauchy transform).

In the reverse direction, we have the inversion formula

µ((s, t)) +
µ({s}) + µ({t})

2
= lim

y→+0

∫ t

s
ImG (x + iy) dx ,

where

G (x) =
1

x
gµ

(
1

x

)
.

(Stieltjes-Perron inversion formula). If w(x)dx is the absolutely continuous
part of µ, then

w(x) = − 1

π
lim

y→+0
ImG (x + iy).
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Chebyshev polynomials of the second kind
We have

Un(x) =

b n
2
c∑

k=0

(
n − k

k

)
(−1)k(2x)n−2k .

These orthogonal polynomials satisfy the three-term recurrence

Un(x) = 2xUn−1(x)− Un−2(x),

with U0(x) = 1,U1(x) = 2x .
The measure for these polynomials is

dµ(x) =
1

π

√
1− x2dx on [−1, 1].

These polynomials begin

1, 2x , 4x2 − 1, 8x3 − 4x , 16x4 − 12x2 + 1, . . . .
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The normalized moments 2
π

∫ 1
−1 x

n
√

1− x2 dx begin

1, 0,
1

4
, 0,

1

8
, 0,

5

64
, 0,

7

128
, 0,

21

512
, 0, . . . .

These are given by

µn =
n!

2n
(
n
2

)
!
(
n
2 + 1

)
!

1 + (−1)n

2
.

For instance, we have

4

∣∣∣∣∣∣
1 0 1/4
0 1/4 0
1 x x2

∣∣∣∣∣∣ /
∣∣∣∣1 0
0 1/4

∣∣∣∣ = 4x2 − 1.
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Preliminaries on generating functions
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Figure: Abraham deMoivre (1667-1754)
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Generating functions
If an is the sequence

a0, a1, a2, a3, a4 . . .

then the expression

A(x) =
∞∑
n=0

anx
n = a0 + a1x + a2x

2 + · · ·

is called the ordinary generating function of an.
The expression

Ae(x) =
∞∑
n=0

an
xn

n!
= a0 + a1

x

1!
+ a2

x

2!
+ · · ·

is called the exponential generating function of an.
We have

an = [xn]A(x) = n![xn]Ae(x),

where [xn] is the operator that extracts the coefficient of xn from a
generating function.
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General generating function

If cn is a sequence such that cn 6= 0 for all n, then we can define

Ac(x) =
∞∑
n=0

an
xn

cn
=

a0

c0
+ a1

x

c1
+ a2

x

c2
+ · · · .

We then have

an = cn[xn]Ac(x).

For the ordinary generating function, we have cn = 1 for all n.
For the exponential generating function, we have cn = n!.
Other choices might be cn = (n + 1)!, or cn = 2nn!.
Mathematical physics is a good source of alternative values for cn.
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Let φ(t) =
∑∞

k=0 ck
tk

k! . Then∫ ∞
0

φ(t)e−tx dt =

∫ ∞
0

( ∞∑
k=0

ck
tk

k!

)
e−tx dt

=
∞∑
k=0

ck

∫ ∞
0

tke−tx

k!
dt

=
∞∑
k=0

ckx
−(k+1)

=
1

x
g

(
1

x

)
,

where

g(x) =
∞∑
k=0

ckx
k .
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Sumudu transform

To go from an exponential generating function to an ordinary generating
function, we can use this variant of the Laplace transform.

g(x) =
1

x

∫ ∞
0

φ(t)e−
t
x dt
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Generating functions are useful when they can be
written in a compact form
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Example

The ordinary generating function of the sequence

1, 1, 1, 1, 1, . . .

is given by
∞∑
n=0

1.xn =
∞∑
n=0

xn.

A short way to write
∑∞

n=0 x
n is

1

1− x

This can be seen by
I Carrying out the long division of 1 by 1− x

I Using the extended binomial theorem
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Convolutions
If

f (x) =
∞∑
n=0

fnx
n

and

g(x) =
∞∑
n=0

gnx
n,

then

f (x)g(x) =
∞∑
n=0

(
n∑

k=0

fkgn−k

)
xn.

If

f (x) =
∞∑
n=0

fn
xn

n!

and

g(x) =
∞∑
n=0

gn
xn

n!
,

then

f (x)g(x) =
∞∑
n=0

(
n∑

k=0

(n
k

)
fkgn−k

)
xn

n!
.

(Please correct notes!)
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The Binomial Theorem
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Binomial theorem
We have the well known formula

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k =

n∑
k=0

(
n

k

)
an−kbk .

(a + b)−n =
∞∑
k=0

(−n
k

)
akbn−k .

Now we use (−n
k

)
= (−1)n

(n + k − 1

k

)
.

[xn]
1

1− x
= [xn](1− x)−1

= [xn]
∞∑
k=0

(−1

k

)
(−1)kxk .1n−k

= [xn]
∞∑
k=0

(k + 1− 1

k

)
xk

= [xn]
∞∑
k=0

(k
k

)
xk = 1.
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Binomial example

[xn]
xk

(1− x)k+1
= [xn−k ](1− x)−(k+1)

= [xn−k ]
∞∑
j=0

(
−(k + 1)

j

)
(−x)j

= [xn−k ]
∞∑
j=0

(
k + 1 + j − 1

j

)
x j

= [xn−k ]
∞∑
j=0

(
k + j

j

)
x j

=

(
k + n − k

n − k

)
=

(
n

n − k

)
=

(
n

k

)
.
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Lagrange Inversion
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Series reversion

Let
f (x) = 0 + f1x + f2x

2 + f3x
3 + · · · .

The solution to
f (u) = x

with u(0) = 0 is called the reversion of f . We shall denote it by

f̄ (x) = Rev{f }(x).

We have
f̄ (f (x)) = x and f (f̄ (x)) = x .

We also have

Rev{Rev{f }}(x) = f (x) or f̄ (x) = x .
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Lagrange inversion allows us to extract
the coefficients of f̄ (x) using a knowledge

of those of f .
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Lagrange inversion

We have

[xn]G (f̄ (x)) =
1

n
[xn−1]G ′(x)

(
x

f (x)

)n

.

Equivalently, we have

[xn]G (f (x)) =
1

n
[xn−1]G ′(x)

(
x

f̄ (x)

)n

.
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Lagrange inversion
Let f (x) = x(1− x). Then

f̄ (x) =
1−
√

1− 4x

2
.

[xn](f̄ (x))k =
1

n
[xn−1]kxk−1

(
x

x(1− x)

)n

=
k

n
[xn−k ]

(
1

1− x

)n

=
k

n
[xn−k ]

∞∑
j=0

(
n + j − 1

j

)
x j

=
k

n

(
n + n − k − 1

n − k

)
=

k

n

(
2n − k − 1

n − k

)
.
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Continued Fractions
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Continued fractions
Sometimes, generating functions can be written as S-continued fractions.
Consider

f (x) =
1

1−
x

1−
x

1−
x

1− · · ·

.

If we let u = f (x), then we have

u =
1

1− xu
.

Thus
u(1− xu) = 1 or xu2 − u − 1 = 0.

We obtain

f (x) =
1−
√

1− 4x

2x
.
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The following type of J-continued fraction

g(x) =
µ0

1− α0x −
β1x

2

1− α1x −
β2x

2

1− α2x −
β3x

2

1− α3x − · · ·

can be associated to lattice paths.
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Equivalent forms

a0

1−
a1x

1−
a2x

1−
a3x

1− · · ·
is equal to

a0

1− a1x −
a1a2x

2

1− (a2 + a3)x −
a3a4x

2

1− (a4 + a5)x − · · ·

.
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Other forms are common. For instance,

1

1− x −
x

1− x −
x

1− x −
x

1− x − · · ·

is equal to

S(x) =
1− x −

√
1− 6x + x2

2x
,

which expands to give

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, . . . ,

the large Schroeder numbers.
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In this case, we also have

S(x) =
1

1− 2x −
2x2

1− 3x −
2x2

1− 3x −
2x2

1− 3x − · · ·

.

“These count the number of (colored) Motzkin n-paths with each up-step
and each flat-step at ground level getting one of 2 colors and each
flat-step not at ground level getting one of 3 colors”.
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Recurrences

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 41 / 288



Recurrences

Sequences can often be described by recurrences, where we prescribe how
to construct the elements of the sequence in terms of known prior values.
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Fibonacci numbers
The Fibonacci numbers Fn are defined by

Fn = Fn−1 + Fn−2, for n ≥ 2,

with F0 = 0, F1 = 1.
Thus each Fibonacci number is the sum of the two proceeding numbers,
beginning with 0, 1. We get

0, 1, 1, 2, 3, 5, 8, 13, . . . .

Multiplying by xn and summing from n = 2 on, we get

∞∑
n=2

Fnx
n =

∞∑
n=2

Fn−1x
n +

∞∑
n=2

Fn−2x
n

= x
∞∑
n=0

Fnx
n + x2

∞∑
n=0

Fnx
n

Adding F0x0 + F1x1 = 0 · x0 + 1 · x = 0 + x to both sides and simplifying, we get

∞∑
n=0

Fnx
n =

x

1− x − x2
.
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Catalan numbers

The Catalan numbers Cn which begin

1, 1, 2, 5, 14, 42, . . . ,

satisfy the convolution-type recurrence

Cn =
n−1∑
i=0

CiCn−1−i , n ≥ 1,

with C0 = 1.
From this we can show that

c(x) =
∞∑
n=0

Cnx
n =

1−
√

1− 4x

2x
.
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The Stirling numbers of the second kind

The Stirling numbers of the Second kind, S(n, k) =
{n
k

}
, satisfy the

recurrence
S(n, k) = S(n, k − 1) + kS(n, k),

with the initial conditions

S(0, 0) = 1, and S(n, 0) = S(0, n) = 0, n > 0.

The Stirling numbers of the second kind S(n, k) count forests of k
increasing unary trees on n nodes (as well as the number of ways to
partition a set of n objects into k non-empty subsets).
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An interesting recurrence

an+2an = a2
n+1 + 1,

or more generally,

an =
a2
n−1 + s

an−2
.

Remark: With a0 = 1, a1 = r , and s = rk + r − 1, the solutions are integer
valued and are linked to special Riordan arrays.
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Polynomial families
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Polynomial families - 1

By a polynomial family Pn(x) we shall understand a sequence of
polynomials

P0(x),P1(x),P2(x),P3(x), . . .

where Pn(x) is of exact degree n. We thus have

Pn(x) =
n∑

k=0

an,kx
k .

The infinite matrix (an,k)n,k≥0 will then be a lower-triangular matrix. We
call this matrix the coefficient array of the family of polynomials.
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Polynomial families - 2
Consider the polynomial family given by

Pn(x) = (1 + x)n.

By the binomial theorem, we have

Pn(x) =
n∑

k=0

(
n

k

)
xk .

Thus the coefficient array in this case is the binomial matrix (Pascal’s
triangle) 

1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 3 1 0
1 4 6 4 1

 .
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Thus we have

1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
1 5 10 10 5 1





1
x
x2

x3

x4

x5

 =



1
1 + x

(1 + x)2

(1 + x)3

(1 + x)4

(1 + x)5
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Polynomial families - 3
Consider the family of polynomials

Pn(x) =
n−1∏
k=0

(x + k).

The family begins

1, x , x(x + 1), x(x + 1)(x + 2), . . .

We have

Pn(x) =
n∑

k=0

S(n, k)xk

where S(n, k) =
{n
k

}
are the Stirling numbers of the second kind.

1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 2 3 1 0
0 6 11 6 1

 .
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Thus we have
1 0 0 0 0 0
0 1 0 0 0 0
0 1 1 0 0 0
0 2 3 1 0 0
0 6 11 6 1 0
0 24 50 35 10 1




1
x
x2

x3

x4

x5

 =


1
x

x(x + 1)
x(x + 1)(x + 2)

x(x + 1)(x + 2)(x + 3)
x(x + 1)(x + 2)(x + 3)(x + 4)
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Orthogonal polynomials and continued fractions
A generating function of the form

g(x) =
∞∑
k=0

µnx
n

where

g(x) =
µ0

1− α0x −
β1x

2

1− α1x −
β2x

2

1− α2x −
β3x

2

1− α3x − · · ·

can be associated to the family of polynomials that obey

Pn(x) = (x − αn)Pn−1(x)− βnPn−1(x).
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Hankel transform
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Hankel transform

Given a sequence µn, we can define its Hankel transform to be the
sequence hn where

hn = |µi+j |0≤i ,j≤n.
If µn has a generating function

µ0

1− α0x −
β1x2

1− α1x −
β2x2

1− α2x −
β3x2

1− α3x − · · ·

then we have

hn = µn+1
0

n∏
k=0

βn−kk .

Note that this is independent of the αn.
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Figure: Lou Shapiro
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Preliminaries on Riordan arrays
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Riordan arrays - ordinary

Let

g(x) = g0 + g1x + g2x
2 + . . . =

∞∑
n=0

gnx
n

f (x) = 0 + f1x + f2x
2 + . . . =

∞∑
n=1

fnx
n.

The matrix with (n, k)-th element given by

tn,k = [xn]g(x)f (x)k

is called the (ordinary) Riordan array (g(x), f (x)) defined by the pair
g(x), f (x).
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Riordan arrays - exponential

Let

g(x) = g0 + g1
x

1!
+ g2

x2

2!
+ . . . =

∞∑
n=0

gn
xn

n!

f (x) = 0 + f1
x

1!
+ f2

x2

2!
+ . . . =

∞∑
n=1

fn
xn

n!
.

The matrix with (n, k)-th element given by

tn,k =
n!

k!
[xn]g(x)f (x)k

is called the exponential Riordan array [g(x), f (x)] defined by the pair
g(x), f (x).
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Riordan arrays and combinatorial
structures
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Figure: Phillipe Flajolet (1948 - 2011)
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Increasing trees

”An increasing tree is a labelled rooted tree in which labels
along any branch from the root go in increasing order.

Such trees can represent permutations, data structures in
computer science, and probabilistic models in diverse

applications.” (Bergeron, Flajolet, Salvy)
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Degree weight generating function φ(x)

For non-planar graphs, we have

φ(x) =
∞∑
n=0

φn
xn

n!
,

where there are φn sorts of nodes of outdegree n.
We can associate the following expressions with increasing trees of
different kinds.

I plane binary: φ(x) = (1 + x)2

I Motzkin (plane unary-binary): φ(x) = 1 + x + x2

I non plane unary-binary: φ(x) = 1 + x + x2/2

I general Catalan tree: φ(x) = 1
1−x

I non plane recursive (Cayley): φ(x) = ex
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Production matrix

For each φ(x), we can consider the matrix with bivariate generating
function

exy (φ′(x) + yφ(x)).

We take the example of

φ(x) = 1 + x + x2 =⇒ φ′(x) = 1 + 2x .

Thus we consider the matrix with bivariate generating function

exy (1 + 2x + y(1 + x + x2)).

We understand this to be exponential in x , and ordinary in y .

∞∑
n=0

∞∑
k=0

tn,k
xn

n!
yk = exy (1 + 2x + y(1 + x + x2)).
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Jacobi matrix

In the case of φ(x) = 1 + x + x2, we obtain

1 1 0 0 0 0 0
2 2 1 0 0 0 0
0 6 3 1 0 0 0
0 0 12 4 1 0 0
0 0 0 20 5 1 0
0 0 0 0 30 6 1
0 0 0 0 0 42 7


.
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Jacobi matrix 

1 1 0 0 0 0 0
2 2 1 0 0 0 0
0 6 3 1 0 0 0
0 0 12 4 1 0 0
0 0 0 20 5 1 0
0 0 0 0 30 6 1
0 0 0 0 0 42 7


.

Dividing each element tn,k by n!
k!

, we obtain the matrix



1 1 0 0 0 0 0
2 2 2 0 0 0 0
0 3 3 3 0 0 0
0 0 4 4 4 0 0
0 0 0 5 5 5 0
0 0 0 0 6 6 6
0 0 0 0 0 7 7


.

Thus in this case, each diagonal is in arithmetic progression.
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We have 
1 1 0 0
2 2 1 0
0 6 3 1
0 0 12 4


0

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .


1 1 0 0
2 2 1 0
0 6 3 1
0 0 12 4


1

=


1 1 0 0
2 2 1 0
0 6 3 1
0 0 12 4

 .


1 1 0 0
2 2 1 0
0 6 3 1
0 0 12 4


2

=


3 3 1 0
6 12 5 1

12 30 27 7
0 72 84 28

 .


1 1 0 0
2 2 1 0
0 6 3 1
0 0 12 4


3

=


9 15 6 1

30 60 39 9
72 234 195 55

144 648 660 196

 .
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The production matrix generates the following lower-triangular matrix.

1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 3 1 0 0 0 0
9 15 6 1 0 0 0

39 75 45 10 1 0 0
189 459 330 105 15 1 0

1107 3087 2709 1050 210 21 1


.

The sequence 1, 1, 3, 9, 39, 189, 1107, . . . is A080635(n+1), the number of
permutations on n + 1 letters without double falls and without initial falls.
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1
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1
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1

2
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1

2

34

1

2

3

4

1
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4

1

23

4

1

3 2

4

1

2 3

4

The sequence 1, 1, 1, 3, 9, 39, 189, 1107, . . . counts the number of planar
increasing unary-binary trees with n nodes.
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We have∫ x

0

1

φ(t)
dt =

∫ x

0

1

1 + t + t2
dt =

2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3
.

Now solving the equation

2√
3

tan−1

(
1 + 2z√

3

)
− π

3
√

3
= x

for z , we find that

z = Rev

(
2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3

)
=

√
3

2
tan

(√
3x

2
+
π

6

)
− 1

2
.
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Furthermore, we have∫ x

0

φ′(t)

φ(t)
dt =

∫ x

0

1 + 2t

1 + t + t2
dt = ln(1 + x + x2).

We let

g(x) = e− ln(1+x+x2) =
1

1 + x + x2
.

Now form
1

g
(√

3
2 tan

(√
3x
2 + π

6

)
− 1

2

)
to get

3

2(cos
(√

3x + π
3

)
+ 1)

.

This is the e.g.f. of the sequence 1, 1, 3, 9, 39, 189, . . ..
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The (ordinary) generating function of the sequence 1, 1, 3, 9, 39, 189, . . .
can be expressed as the continued fraction

1

1− x −
2x2

1− 2x −
6x2

1− 3x −
12x2

1− 4x − · · ·

.

Thus the Hankel transform of this sequence is given by

hn =
n∏

k=0

((k + 1)(k + 2))n−k .
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The matrix 

1 0 0 0 0 0 0
1 1 0 0 0 0 0
3 3 1 0 0 0 0
9 15 6 1 0 0 0

39 75 45 10 1 0 0
189 459 330 105 15 1 0

1107 3087 2709 1050 210 21 1


is the exponential Riordan array[

3

2
(
cos
(√

3x + π
3

)
+ 1
) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2

]
or [

d

dx
Rev

∫ x

0

1

φ(t)
dt,Rev

∫ x

0

1

φ(t)
dt

]
.
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The sequence 1, 1, 3, 9, 39, 189, 1107, . . . is the moment sequence for the
family of orthogonal polynomials

Pn(x) = (x − n)Pn−1(x)− n(n − 1)Pn−2(x),

with P0(x) = 1, P1(x) = x − 1.
The coefficient array of this family of polynomials is given by[

3

2
(
cos
(√

3x + π
3

)
+ 1
) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2

]−1

=

[
1

1 + x + x2
,

2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3

]
.
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We now take φ(x) = 1 + x2. Then φ′(x) = 2x .
The expression

exy (2x + y(1 + x2))

expands to give the production matrix

0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 6 0 1 0 0 0
0 0 12 0 1 0 0
0 0 0 20 0 1 0
0 0 0 0 30 0 1
0 0 0 0 0 42 0


corresponding to

Pn(x) = xPn−1(x)− n(n − 1)Pn−2(x).
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The production matrix generates the matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0
2 0 1 0 0 0 0
0 8 0 1 0 0 0

16 0 20 0 1 0 0
0 136 0 40 0 1 0

272 0 616 0 70 0 1


,

which is [
1

cos2(x)
, tan(x)

]
=

[
1

1 + x2
, tan−1(x)

]−1

.

The numbers 1, 2, 16, 272, 7936, 353792, 22368256, . . . are the tangent
numbers (or “Zag” numbers).
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Non plane unary binary trees
For φ(x) = 1 + x + x2/2 (non-plane unary binary trees), we have∫ x

0

dt

φ(t)
= 2 tan−1(1 + x)− π

2
,

and ∫ x

0

φ′(t)dt

φ(t)
= ln

(
2 + 2x + x2

2

)
.

We find that[
2

2 + 2x + x2
, 2 tan−1(1 + x)− π

2

]−1

=

[
1

1− sin(x)
, tan

(
2x + π

4

)
− 1

]
is the coefficient array of the corresponding family of orthogonal
polynomials. These are

Pn(x) = (x − n)Pn−1(x)−
(
n

2

)
Pn−2(x).
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Non plane unary binary trees

The production matrix

1 1 0 0 0 0 0
1 2 1 0 0 0 0
0 3 3 1 0 0 0
0 0 6 4 1 0 0
0 0 0 10 5 1 0
0 0 0 0 15 6 1
0 0 0 0 0 21 7


has generating function

exy (1 + x + y(1 + x + x2/2)).
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Non plane unary binary trees

The moment matrix [
1

1− sin(x)
, tan

(
2x + π

4

)
− 1

]
begins 

1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
5 11 6 1 0 0 0

16 45 35 10 1 0 0
61 211 210 85 15 1 0

272 1113 1351 700 175 21 1


.

It enumerates forests of k increasing unordered trees on the vertex set
{1, 2, . . . , n} rooted at 1, in which all outdegrees are ≤ 2.
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I Increasing trees =⇒ Exponential Riordan arrays [g , f ]
where f ′(x) = g(x).

I When φ(x) = a + bx + cx2 the inverses of these
exponential Riordan arrays are the coefficient arrays of
orthogonal polynomials.

I When φ(x) is a polynomial of degree d , we have
(d − 1)-orthogonal polynomials
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Bilabelled increasing trees
The exponential Riordan array[

1

cos2(x/
√

2)
,
√

2 tan

(
x√
2

)]
=

[
2

2 + x2
,
√

2 tan−1

(
x√
2

)]−1

is associated to unordered bilabelled increasing trees.
1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 4 0 1 0
4 0 10 0 1


1,2 1,2

3,4

1,2

3,4

5,6

1,2

3,4 5,6

1,2

3,5 4,6

1,2

3,6 4,5
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Production matrix; orthogonal polynomials



0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 3 0 1 0 0 0 0
0 0 6 0 1 0 0 0
0 0 0 10 0 1 0 0
0 0 0 0 15 0 1 0
0 0 0 0 0 21 0 1
0 0 0 0 0 0 28 0


exy
(
x + y

(
1 +

x2

2

))

Pn(x) = xPn−1(x)− n(n − 1)

2
Pn−2(x),

P0(x) = 1, P1(x) = x .
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Ordered bilabelled increasing trees
The first column of the exponential Riordan array[

e
InvErf2

(√
2
π
x

)
,
√

2 InvErf

(√
2

π
x

)]

counts ordered bilabelled increasing trees

1, 1, 7, 127, 4369, . . . .

Its production matrix has g.f. given by

exy (xex
2/2 + yex

2/2).

The production matrix in this case is the “beheaded” exponential Riordan
array [

ex
2/2, x

]
.
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Back to 123
The matrix 

1 1 0 0 0 0
1 2 1 0 0 0
0 4 3 1 0 0
0 0 9 4 1 0
0 0 0 16 5 1
0 0 0 0 25 6


is generated by

exy (1 + x + y(1 + x + x2))

Riordan array theory allows us to go from the pair

(1 + x , 1 + x + x2)

to the exponential Riordan array √
3

2 ex/2

cos
(√

3x
2 + π

6

) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2

 .
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We know that∫ x

0

dt

1 + t + t2
=

2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3
,

and that

Rev

{
2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3

}
=

√
3

2
tan

(√
3x

2
+
π

6

)
− 1

2
.

We also have∫ x

0

1 + t

1 + t + t2
dt =

1√
3

tan−1

(
1 + 2x√

3

)
+

1

2
ln(1 + x + x2)− π

6
√

3
.

Then

e
−
∫ x

0
1+t

1+t+t2 dt
=

e
π

6
√

3
− 1√

3
tan−1

(
1+2x√

3

)
√

1 + x + x2
.
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The matrix we seek is thene π
6
√

3
− 1√

3
tan−1

(
1+2x√

3

)
√

1 + x + x2
,

2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3

−1

=

 √
3

2 ex/2

cos
(√

3x
2 + π

6

) , √3

2
tan

(√
3x

2
+
π

6

)
− 1

2

 .
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(1+x , 1+x+x2) =⇒

e π
6
√

3
− 1√

3
tan−1

(
1+2x√

3

)
√

1 + x + x2
,

2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3

−1

Permutations that avoid 123.

(1 + 2x , 1 + x + x2) =⇒
[

1

1 + x + x2
,

2√
3

tan−1

(
1 + 2x√

3

)
− π

3
√

3

]−1

Planar increasing unary-binary trees.

The pair (1 + 3x , 1 + x + x2) lead to the sequence

1, 1, 4, 13, 67, 358, 2365, 17053, 139780, 1251865, 12318247, . . . .

Any ideas what this counts?
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The Riordan Group
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Ordinary Riordan arrays

Given two power series

g(x) = 1 + g1x + g2x
2 + · · · =

∞∑
n=0

gnx
n,

and

f (x) = 0 + f1x + f2x
2 + · · · =

∞∑
n=1

fnx
n,

we define the associated Riordan array (g , f ) to be the lower-triangular
matrix with (n, k)-th term

tn,k = [xn]g(x)f (x)k

Thus tn,k is the coefficient of xn in the expansion of the product
g(x)f (x)k .
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Method of coefficients
The coefficient extraction operator [xn] acts according to a number of
simple rules.

Linearity [xn](rf (x) + sg(x)) = r [xn]f (x) + s[xn]g(x)

Shifting [xn]xf (x) = [xn−1]f (x)

Differentiation [xn]f ′(x) = (n + 1)[xn+1]f (x)

Convolution [xn]g(x)f (x) =
∑n

k=0([xk ]g(x))[xn−k ]f (x)

Composition [xn]g(f (x)) =
∑∞

k=0([x ]kg(x))[xn]f (x)k

Inversion [xn]f̄ (x)k = k
n [xn−k ]

(
x

f (x)

)n
P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 92 / 288



Composition of power series

If

g(x) = g0 + g1x + g2x
2 + · · · =

∞∑
n=0

gnx
n,

and

f (x) = 0 + f1x + f2x
2 + · · · =

∞∑
n=1

fnx
n,

then the composition of g and f is defined by

g(f (x)) = g0 + g1f (x) + g2f (x)2 + g3f (x)3 + · · · =
∞∑
n=0

gnf (x)k .
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Series reversion

For a power series

f (x) = 0 + f1x + f2x + · · · =
∞∑
n=1

fnx
n,

the reversion of f ,
f̄ = Revf ,

is defined to be the power series such that

f̄ (f (x)) = f (f̄ (x)) = x .

Thus f̄ (x) is the solution of the equation

f (u) = x

such that u(0) = 0.
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Series reversion example

Example

We have seen that the reversion of x(1− x) is obtained by solving

u(1− u) = x , or u2 − u + x = 0.

We get

x(1− x) = Rev{x(1− x)} =
1−
√

1− 4x

2
.

Example

In like manner, the reversion of x
1−x is obtained by solving

u

1− u
= x or u = x − xu or u(1 + x) = x .

We get
x

1− x
= Rev{ x

1− x
} =

x

1 + x
.
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Let us calculate [xn]x(1− x). We have

[xn]x(1− x) =
1

n
[xn−1]

(
x

x(1− x)

)n

=
1

n
[xn−1](1− x)−n

=
1

n
[xn−1]

∞∑
j=0

(
−n
j

)
(−1)jx j

=
1

n
[xn−1]

∞∑
j=0

(
n + j − 1

j

)
x j

=
1

n

(
n + n − 1− 1

n − 1

)
=

1

n

(
2n − 2

n − 1

)
.

Thus [xn]
1−
√

1− 4x

2x
=

1

n + 1

(
2n

n

)
= Cn.
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The Riordan group

We have [xn]xk = δn,k and so the Riordan array (1, x) is the Identity
matrix.
The set

R = {(g , f ) | g = g0 + g1x + · · · , f = 0 + f1x + f2x
2 + · · · },

along with matrix multiplication, is then a group. In terms of the defining
power series, matrix multiplication corresponds to the following rule:

(g(x), f (x)) · (u(x), v(x)) = (g(x)u(f (x)), v(f (x))).
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Inverse of a Riordan array

The inverse of (g(x), f (x)) is given by

(g(x), f (x))−1 =

(
1

g(f̄ (x))
, f̄ (x)

)
.
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The Riordan array A =
(

1
1−x ,

x
1−x

)
is the Binomial matrix (Pascal’s

triange) with general element
(n
k

)
. The Riordan array

B = (1 + x , x(1 + x)) is the matrix with general term
(k+1
n−k
)
. Let us

calculate AB and BA. We have(
1

1− x
,

x

1− x

)
· (1 + x , x(1 + x)) =

(
1

1− x

(
1 +

x

1− x

)
,

x

1− x

(
1 +

x

1− x

))
=

(
1

1− x

(
1

1− x

)
,

x

1− x

(
1

1− x

))
=

(
1

(1− x)2
,

x

(1− x)2

)
.

(1 + x , x(1 + x)) ·
(

1

1− x
,

x

1− x

)
=

(
(1 + x)

1

1− x(1 + x)
,

x(1 + x)

1− x(1 + x)

)
=

(
1 + x

1− x − x2
,

x(1 + x)

1− x − x2

)
.
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Some subgroups
The last two Riordan arrays are elements of the Bell subgroup of R.

B = {(g , f ) ∈ R | f (x) = xg(x)}.

or
B = {(g , f ) ∈ R | g(x) = f (x)/x}.

Another subgroup is the Derivative subgroup

D = {(g , f ) ∈ R | g(x) = f ′(x)}.

The Appell subgroup is the group

A = {(g , f ) ∈ R | f (x) = x}.

The Lagrange (or associated) subgroup is the group

L = {(g , f ) ∈ R | g(x) = 1}.

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 100 / 288



The Appell subgroup

A = {(g , x) | g(x) = g0 + g1x + g2x
2 + · · · }.

We have
tn,k = [xn]g(x)xk = [xn−k ]g(x) = gn−k

g0 0 0 0 · · ·
g1 g0 0 0 · · ·
g2 g1 g0 0 · · ·
g3 g2 g1 g0 · · ·
...

...
...

...
. . .
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We have
(g(x), x) · (1, f (x)) = (g(x), f (x)).

Then we have the semi-direct product

R = Ao L

where A is a normal subgroup of R.
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Fundamental Theorem of Riordan Arrays

Let A(x) =
∑∞

n=0 anx
n be the generating function of the sequence an.

Let B(x) =
∑∞

n=0 bnx
n be the generating function of the sequence bn,

where we have

(g , f )


a0

a1

a2
...

 =


b0

b1

b2
...

 .

Then

B(x) = (g(x), f (x))A(x)

= g(x)A(f (x)).
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Row sums

(g(x), f (x))


1
1
1
...

 =


t0,0 0 0 0 · · ·
t1,0 t1,1 0 0 · · ·
t2,0 t2,1 t2,2 0 · · ·
t3,0 t3,1 t3,2 t3,3 · · ·

...
...

...
...

. . .




1
1
1
...



=


t0,0

t1,0 + t1,1

t2,0 + t2,1 + t2,2
...

 .

(g(x), f (x))
1

1− x
= g(x)

1

1− f (x)
=

g(x)

1− f (x)
.
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Binomial transform 1

Consider the Riordan array (
1

1− x
,

x

1− x

)
.

We have

(
1

1− x
,

x

1− x

)
=


1 0 0 0 · · ·
1 1 0 0 · · ·
1 2 1 0 · · ·
1 3 3 1 · · ·
...

...
...

...
. . .

 =

((
n

k

))
.
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Binomial transform 2

[xn]
1

1− x

(
x

1− x

)k

= [xn]
xk

(1− x)k+1

= [xn−k ](1− x)−(k+1)

= [xn−k ]
∞∑
j=0

(
−(k + 1)

j

)
(−1)jx j

= [xn−k ]
∞∑
j=0

(
k + 1 + j − 1

j

)
x j

= [xn−k ]
∞∑
j=0

(
k + j

j

)
x j

=

(
k + n − k

n − k

)
=

(
n

n − k

)
=

(
n

k

)
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Binomial transform 3

Let the sequence an have generating function A(x). The binomial
transform of an is the sequence bn where

bn =
n∑

k=0

(
n

k

)
ak .

But (
1

1− x
,

x

1− x

)
· A(x) =

1

1− x
A

(
x

1− x

)
.

Thus the binomial transform bn of an will have generating B(x) given by

B(x) =
1

1− x
A

(
x

1− x

)
.
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A lattice path example
A Dyck path is a path in the first quadrant which begins at the origin
(0, 0), ends at (2n, 0), and consists of steps (1, 1) (North-East), called
rises, and (1,−1) (South-East), called falls. We refer to n as the
semilength of the path. Dyck paths of semilength n are sometimes called
Dyck n-paths. A peak of a Dyck path is the joint node formed by a rise
step immediately followed by a fall step. The height of a peak is the
y -coordinate of this node.

Figure: A Dyck path

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 108 / 288



.

1 2 3 4 5 · · · k

0

1

2

3

4

5

6

1

1

1

2

5

14

1

2

5

14

...

1

3

9

1

4

...

...
...

...
...

...

1

· · ·

Figure: Dyck paths counted per length and per x-axis points
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This is the Riordan array (1, xc(x)) where

c(x) =
1−
√

1− 4x

2x
.

Its inverse is given by

(1, xc(x))−1 = (1, x(1− x))

since we have
Rev{x(1− x)} = xc(x).
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The Riordan array M = (c(x), xc(x)) begins

M =



1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 2 1 0 0 0 0
5 5 3 1 0 0 0

14 14 9 4 1 0 0
42 42 28 14 5 1 0

132 132 90 48 20 6 1


.

The (n, k)-th element of this array counts the number of Dyck paths of
semilength n which have their first peak at height k .
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We find that
M−1M

begins 

1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 1 0
1 1 1 1 1 1 1
1 1 1 1 1 1 1


.
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Sequence characterization of Riordan arrays



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 1 0 0 0 0

1 3 3 1 0 0 0

1 4 6 4 1 0 0

1 5 10 10 5 1 0

1 6 15 20 15 6 1


.

(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
tn,k = 1 · tn−1,k−1 + 1 · tn−1,k

tn,k = a0 · tn−1,k−1 + a1 · tn−1,k + a2 · tn−1,k+1 + · · · .
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The A sequence
Consider

(
1

1−x ,
x

1−x

)
. Here, we have

f (x) =
1

1− x
.

Now
f̄ (x) =

x

1 + x
.

Then
x

f̄ (x)
=

x
x

1+x

= 1 + x .

In this case we let
A(x) = 1 + x = 1 + 1 · x .

This corresponds to

tn,k = 1 · tn−1,k−1 + 1 · tn−1,k .
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Now consider 

1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 2 1 0 0 0 0
4 5 3 1 0 0 0
9 12 9 4 1 0 0

21 30 25 14 5 1 0
51 76 69 44 20 6 1


.

We can guess that

tn,k = 1 · tn−1,k−1 + 1 · tn−1,k + 1 · tn−1,k+1.

This is the Riordan array(
1− x −

√
1− 2x − 3x2

2x2
,

1− x −
√

1− 2x − 3x2

2x

)
.
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We have f (x) = 1−x−
√

1−2x−3x2

2x . Solving

f (u) = x

for u and taking the solution with u(0) = 0 gives us

f̄ (x) =
x

1 + x + x2
.

Then
x

f̄
=

x
x

1+x+x2

= 1 + x + x2.

We get
A(x) = 1 + x + x2 = 1 + 1 · x + 1 · x2.
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A Motzkin path is a path in the first quadrant which begins at the origin
(0, 0), ends at (n, 0), and consists of steps (1, 1) (North-East), called rises,
and (1,−1) (South-East), called falls, and steps (1, 0) (East) called
horizontals. A partial Motzkin path that starts from (0, 0) and ends at the
point (n, k) (not necessarily on the x-axis) is called a left factor of a
Motzkin path. See Figure 8.

Figure: A Motzkin path
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Figure: Motzkin left-factors to (n, k)
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The Z sequence

The A sequence, where

A(x) =
x

f̄
,

can characterize the “internal” elements of the Riordan array (g(x), f (x)).
To characterize the first column elements of (g(x), f (x)), we use the Z
sequence, where

Z (x) =
1

f̄

(
1− t0,0

g(f̄ (x))

)
.

Then we have

tn,0 = z0tn−1,0 + z1tn−1,1 + z2tn−1,2 + · · · .
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The A and the Z sequences

The A sequence operates as

∗ →
↖

while the Z sequence operates as

∗ →
↑
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The production matrix of an ordinary Riordan array

The pair (A(x),Z (x)) is uniquely defined by (g(x), f (x)). Thus to the
Riordan array M = (g(x), f (x)) we can uniquely associate the matrix

P =



z0 a0 0 0 0 0
z1 a1 a0 0 0 0
z2 a2 a1 a0 0 0
z3 a3 a2 a1 a0 0
z4 a4 a3 a2 a1 a0

z5 a5 a4 a3 a2 a1

 .

We have
P = M−1 ·M,

where M is the matrix M with its top row removed.
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When g0 = 1, we have

(g , f )−1 =

(
1− xZ

A
,
x

A

)
,

and

(g , f ) =

(
1

1− xZ
(
Rev{ xA}

) ,Rev
{ x

A

})
.
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Testing for an ordinary Riordan array

The Narayana numbers count the number of Dyck paths from (0, 0) to
(2n, 0) with k peaks.

N(n, k) =
1

k + 1

(
n + 1

k

)(
n

k

)
.



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 20 10 1 0 0
1 15 50 50 15 1 0
1 21 105 175 105 21 1
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This is not an ordinary Riordan array. We can see this easily by calculating
the first few rows of its production matrix.

1 1 0 0 0 0
0 2 1 0 0 0
0 −1 3 1 0 0
0 3 −4 4 1 0
0 −16 20 −10 5 1
0 130 −160 75 −20 6
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We note that the generating function of the Narayana triangle may be
written as

N (x , y) =
1

1− x − xy −
x2y

1− x − xy −
x2y

1− x − xy −
x2y

1− · · ·

.
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Orthogonal polynomials and ordinary Riordan arrays
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Orthogonal polynomials and ordinary Riordan arrays

When A(x) = 1 + a1x + a2x
2 and Z (x) = z0 + z1x , we have

P =



z0 a0 0 0 0 0
z1 a1 a0 0 0 0
0 a2 a1 a0 0 0
0 0 a2 a1 a0 0
0 0 0 a2 a1 a0

0 0 0 0 a2 a1

 .

Thus P is “tri-diagonal”.

Now recall that

(g , f )−1 =

(
1− xZ

A
,
x

A

)
.
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Thus with A(x) = 1 + a1x + a2x
2 and Z (x) = z0 + z1x , we have

(g , f )−1 =

(
1− x(z0 + z1x)

1 + a1x + a2x2
,

x

1 + a1 + a2x2

)
=

(
1 + (a1 − z0)x + (a2 − z1)x2

1 + a1x2 + a2x2
,

x

1 + a1x + a2x2

)
.
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Orthogonal polynomials
We obtain that when

A(x) = 1 + a1x + a2x
2 and Z (x) = z0 + z1x ,

the Riordan array

(g , f )−1 =

(
1 + (a1 − z0)x + (a2 − z1)x2

1 + a1x + a2x2
,

x

1 + a1x + a2x2

)
is the coefficient array for the family of orthogonal polynomials Pn(x)
given by

Pn(x) = (x − a1)Pn−1(x)− a2Pn−2(x),

with

P0(x) = 1,

P1(x) = x − z0,

P2(x) = x2 − x(a1 + z0) + a1z0 − z1.
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Link to the Chebyshev polynomials

We find that Pn(x) is equal to the following sum of scaled shifted versions
of the Chebyshev polynomials of the second kind:

(
√
a2)nUn

(
x − a1

2
√
a2

)
−(z0−a1) (

√
a2)n−1 Un−1

(
x − a1

2
√
a2

)
−(z1−a2)(

√
a2)n−2Un−2

(
x − a1

2
√
a2

)
.
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Link to the Chebyshev polynomials

Alternatively, the Riordan array(
1− λx − µx2

1 + rx2 + sx2
,

x

1 + rx2 + sx2

)
is the coefficient array for

(
√
s)nUn

(
x − r

2
√
s

)
− λ

(√
s
)n−1

Un−1

(
x − r

2
√
s

)
− µ(
√
s)n−2Un−2

(
x − r

2
√
s

)
.
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The Boubaker polynomials

The Boubaker polynomials Bn(x) have coefficient array(
1 + 3x2

1 + x2
,

x

1 + x2

)
.

We find that A(x) = 1 + x2, Z (x) = −2x .
Thus a1 = 0, a2 = 1, z0 = 0, z1 = −2.
We have

Bn(x) = Un(x/2)− 3Un−2(x/2).

The moments of Bn(x) have generating function

1

1 +
2x2

1−
x2

1−
x2

1− · · ·

.
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Large Schroeder numbers as moments

The large Schroeder numbers are defined by

Sn =
n∑

k=0

(
n + k

2k

)
Ck .

They have generating function(
1

1− x
,

x

(1− x)2

)
· c(x) =

1

1− x
c

(
x

(1− x)2

)
,

or
1− x −

√
1− 6x + x2

2x
.
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The ordinary Riordan array(
1

1 + 2x
,

1

1 + 3x + 2x2

)
is the coefficient array of the orthogonal polynomial family

Pn(x) = (x − 3)Pn−1 − 2Pn−2(x),

with P0(x) = 1,P1(x) = x − 2, and P2(x) = x2 − 5x + 4.
Its inverse is given by(

1− x −
√

1− 6x + x2

2x
,

1− 3x −
√

1− 6x + x2

4x

)
.
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Thus the large Schroeder numbers are the moments of this family of
orthogonal polynomials. These numbers enumerate Schroeder paths of
length n. They also enumerate alternating sign matrices that avoid the
pattern 132. We find that

Sn =
1

π

∫ 3+2
√

2

3−2
√

2
xn
√
−1 + 6x − x2

2x
dx .

Recall that we have

g(x) =
1

1− 2x − 2x
1−3x− 2x

1−3x−···

.
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Generalized orthogonal polynomials defined by Riordan
arrays
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2-orthogonal polynomials

When
A(x) = 1 + a1x + a2x

2 + a3x
3

and
Z (x) = z0 + z1x + z2x

2

the Riordan array

(g , f )−1 =

(
1 + (a1 − z0)x + (a2 − z1)x2 + (a3 − z2)x2

1 + a1x + a2x2 + a3x3
,

x

1 + a1x + a2x2 + a3x3

)

is the coefficient array of the family of 2-orthogonal polynomials Pn(x)
with

Pn(x) = (x − a1)Pn−1(x)− a2Pn−2(x)− a3Pn−3, n ≥ 4.
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Laurent biorthogonal polynomials

The Riordan array (
1− βx
1 + αx

,
x(1− βx)

1 + αx

)
is the coefficient array for the biorthogonal polynomials Pn(x) that satisfy

Pn(x) = (x − αx)Pn−1(x)− βxPn−2(x),

with

P0(x) = 1

P1(x) = x − (α + β).

Let (tn,k ) =
(

1+x
1−x

,
x(1+x)

1−x

)
. Then tn,k is the number of length n words on the alphabet

{0, 1, 2} with no two consecutive 1’s and no two consecutive 2’s and having exactly k 0’s.

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 138 / 288



Generalized orthogonal polynomials 1

The Riordan array (
1− βx

1 + αx + βγx2
,

x(1− βx)

1 + αx + βγx2

)
is the coefficient array of the family of generalized orthogonal polynomials

Pn(x) = (x − α)Pn−1(x)− β(x + γ)Pn−2(x).
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Generalized orthogonal polynomials 2

The Riordan array(
1 + (α− δ)x

1 + αx + βx2 + γx3
,

x(1− x)

1 + αx + βx2 + γx3

)
is the coefficient array of the family of generalized orthogonal polynomials
Pn(x) that satisfy

Pn(x) = (x − α)Pn−1(x)− (x + β)Pn−2(x)− γPn−3(x),

with

P0(x) = 1

P1(x) = x − δ
P2(x) = x2 − x(α + β + 1) + αδ − β.
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A path example
Consider the Riordan array

(g , f ) =

(
1− x

1 + x3
,
x(1− x)

1 + x3

)
.

This is the coefficient array of the polynomials that satisfy

Pn(x) = xPn−1(x)− xPn−2(x)− Pn−3(x),

with P0(x) = 1, P1(x) = x − 1, and P2(x) = x2 − 2x .
The moments of this family of polynomials (the first column elements of
(g , f )−1) are given by

µn =
1

n + 1

n∑
k=0

(
n + 1

k

)(
2n − 3k

n − 3k

)
.

These numbers count the number of paths from (0, 0) to (n, n) using steps
of three kinds: (1, 0), (0, 1) and (3, 1).
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Classical orthogonal polynomials and Riordan
arrays
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Classical orthogonal polynomials

The classical orthogonal polynomials of mathematical science are the
Jacobi, Laguerre and Hermite polynomials, defined by the weights
wJ(x) = (1− x)α(1 + x)β on [−1, 1], wL(x) = xαe−x on [0,∞), and
wH(x) = e−x

2
on (−∞,∞), respectively. In particular, these orthogonal

polynomials are associated with measures that are absolutely continuous.
We have

w ′J(x)

wJ(x)
=

x(α + β) + α− β
x2 − 1

,

w ′L(x)

wL(x)
=
α− x

x
,

and
w ′H(x)

wH(x)
= −2x .
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A family of orthogonal polynomials Pn(x) is said to be classical if the
associated measure is absolutely continuous with weight function w(x)
satisfying

w ′(x)

w(x)
=

U(x)

V (x)
=

u0 + u1x

v0 + v1x + v2x2
.

The polynomials y = Pn(x) will then satisfy the differential equation

V (x)y ′′ + (U(x) + V (x))y ′ − n(u1 + (n + 1)v2)y = 0.

If deg(V ) > 2 and/or deg(U) > 1 then we say that the family of
polynomials is semi-classical.
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The Riordan array

M =

(
1 + cx + dx2

1 + ax + bx2
,

x

1 + ax + bx2

)
has moment matrix M−1 given by

(
−

(b − d)
√

1− 2ax + x2(a2 − 4b) + x(a(b + d)− 2bc)− b − d

2(x2(a2d − ac(b + d) + b2 + b(c2 − 2d) + d2) + x(c(b + d)− 2ad) + d)
,

1− ax −
√

1− 2ax + x2(a2 − 4b)

2bx

)
.

The first element of this array is the generating function µ(x) of the
moments of the family of orthogonal polynomials Pn(x). These moments
begin

1, a− c, a2 − 2ac + b + c2 − d , a3 − 3a2c + a(3b + 3c2 − 3d)− c(2b + c2 − 2d), . . .

and their generating function is given by

µ(x) =
1

1− (a− c)x −
(b − d)x2

1− ax −
bx2

1− ax −
bx2

1− · · ·

.
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The measure is given by w(x)dx where

w(x) =
1

2π

(b − d)
√

4b − (x − a)2

dx2 + x(c(b + d)− 2ad) + a2d − ac(b + d) + b2 + b(c2 − 2d) + d2
.

The ratio w ′(x)
w(x) is then given by the expression

−
dx3 − 3adx2 + x(3a2d − b2 − b(c2 + 6d)− d2)− a3d + a(b2 + b(c2 + 6d) + d2)− 4bc(b + d)

((x − a)2 − 4b)(dx2 + x(c(b + d)− 2ad) + a2d − ac(b + d) + b2 + b(c2 − 2d) + d2)
.

Theorem
The ordinary Riordan array(

1 + cx + dx2

1 + ax + bx2
,

x

1 + ax + bx2

)
defines a family of classical orthogonal polynomials in the case that either
c = d = 0 or c = 0, d = −b.
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Corollary

When c = d = 0, we have

w(x) =
1

2π

√
4b − (x − a)2

b

on the interval
[a− 2

√
b, a + 2

√
b].

The moments µn have integral representation

µn =
1

2π

∫ a+2
√
b

a−2
√
b

xn
√

4b − (x − a)2

b
dx .

The moments have generating function

µ(x) =
1− ax −

√
(1− ax)2 − 4bx2

2bx2
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Corollary

µ(x) =
1

1− ax −
bx2

1− ax −
bx2

1− ax −
bx2

1− · · ·

.

By an application of Lagrange inversion, we obtain

µn =
1

n + 1
[xn](1 + ax + bx2)n+1

=
1

n + 1

n∑
k=0

(n + 1

j

)( j

n − j

)
a2j−nbn−j

=
1

n + 1

n∑
k=0

(n + 1

n − k

)(n − k

k

)
an−2kbk .

The moments have Hankel transform

hn = b(n+1
2 ).
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When c = d = 0, the polynomials Pn(x) satisfy the three-term recurrence

Pn(x) = (x − a)Pn−1(x)− bPn−2(x), n > 1,

with P0(x) = 1, P1(x) = x − a.

If y = Pn(x) then y satisfies the differential equation

((x − a)2 − 4b)y ′′ + 3(x − a)y ′ − n(n + 2)y = 0.
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When c = 0 and d = −b, we have

w(x) =
1

π

1√
4b − (x − a)2

on the interval
[a− 2

√
b, a + 2

√
b].

The moments µn have integral representation

µn =
1

π

∫ a+2
√
b

a−2
√
b

xn
1√

4b − (x − a)2
dx .

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 150 / 288



The moments have generating function

µ(x) =
1√

(1− ax)2 − 4bx2

given by

µ(x) =
1

1− ax −
2bx2

1− ax −
bx2

1− ax −
bx2

1− · · ·

.

We have the closed form expression for the moments

µn =
n∑

i=0

(n − i

i

)(n − i − 1/2

n − i

)
(−1)i (a2 − 4b)i (2a)n−2i

=
1

4n

n∑
k=0

(2n − 2k

n − k

)(2k

k

)
(a + 2

√
b)k (a− 2

√
b)n−k .

The moments have Hankel transform

hn = 2nb

(
n+1

2

)
.
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When c = 0 and d = −b, the polynomials Pn(x) satisfy the three-term
recurrence

Pn(x) = (x − a)Pn−1(x)− bPn−2(x), n > 2,

with P0(x) = 1, P1(x) = x − a, and P2(x) = (x − a)2 − b(b + 1).

If y = Pn(x) then y satisfies the differential equation

((x − a)2 − 4b)y ′′ + 3(x − a)y ′ − n2y = 0.
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Summary

When c = d = 0, we have

w(x) =
1

2π

√
4b − (x − a)2

b
, on [a− 2

√
b, a + 2

√
b]

Pn(x) = (x − a)Pn−1(x)− bPn−2(x), n > 1,

with P0(x) = 1,P1(x) = x − a.

((x − a)2 − 4b)y ′′ + 3(x − a)y ′ − n(n + 2)y = 0.

When c = 0 and d = −b, we have

w(x) =
1

π

1√
4b − (x − a)2

, on [a− 2
√
b, a + 2

√
b]

Pn(x) = (x − a)Pn−1(x)− bPn−2(x), n > 2,

with P0(x) = 1, P1(x) = x − a, and P2(x) = (x − a)2 − b(b + 1).

((x − a)2 − 4b)y ′′ + 3(x − a)y ′ − n2y = 0.
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A non-classical example
For Riordan arrays of the type(

1 + rx2

1 + x2
,

x

1 + x2

)
,

we have

Pn(x ; r) =

b n
2
c∑

k=0

(
n − k

k

)
n − (r + 1)k

n − k
(−1)kxn−2k .

We have the following integral representation of the moment sequence
µn(r).

µn(r) =
−1

π

∫ 2

2
xn
√

4− x2(r − 1)

2(rx2 + (r − 1)2)
dx+

r + 1

2r

(
− r − 1√
−r

)n

+
r + 1

2r

(
r − 1√
−r

)n

.

This shows that in this case, the measure defining the orthogonal
polynomials is no longer absolutely continuous, but it reflects the zeros of
the denominator term rx2 + (r − 1)2.
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The Exponential Riordan Group
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Exponential Riordan arrays

An exponential Riordan array is defined by two power series of exponential
type

g(x) = g0 + g1
x

1!
+ g2

x2

2!
+ · · · =

∞∑
n=0

gn
xn

n!
,

and

g(x) = 0 + f1
x

1!
+ f2

x2

2!
+ · · · =

∞∑
n=1

fn
xn

n!
.

We will generally take g0 = 1 and f1 = 1. The exponential Riordan array
associated to the datum (g(x), f (x)) is defined to be the invertible
lower-triangular matrix with general (n, k)-th element

tn,k =
n!

k!
[xn]g(x)f (x)k .

We will denote this matrix by [g(x), f (x)].
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The Identity matrix

Consider the exponential Riordan array [1, x ].
We have

tn,k =
n!

k!
[xn]1.xk

=
n!

k!
[xn−k ] 1

=
n!

k!
[xn−k ] x0

=
n!

k!
δn−k

= 1, if n = k , else 0.

Thus [1, x ] is the identity matrix.

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 157 / 288



The Binomial matrix
Consider the exponential Riordan array [ex , x ]. We have

tn,k = [xn] exxk

=
n!

k!
[xn−k ] ex

=
n!

k!
[xn−k ]

∞∑
i=0

x i

i !

=
n!

k!

1

(n − k)!

=

(
n

k

)
.

Thus

[ex , x ] =

((
n

k

))
is the binomial matrix.
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The Exponential Riordan group

The set of exponential Riordan arrays is a group for the operation of
matrix multiplication. We have

[g(x), f (x)] · [u(x), v(x)] = [g(x)u(f (x)), v(f (x))]

and

[g(x), f (x)]−1 =

[
1

g(f̄ (x))
, f̄ (x)

]
.

The matrix [1, x ] is the identity of the group.
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Row sums

The power series ex =
∑∞

n=0
xn

n! is the exponential generating function of
the sequence

1, 1, 1, 1, 1, . . . .

That is, n![xn]ex = 1 for all n.

The row sums of the exponential Riordan array [g(x), f (x)] then have
generating function

[g(x), f (x)] · ex = g(x)ef (x) = g(x) exp(f (x)).
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Stirling numbers of the second kind example

Consider the exponential Riordan array

[ex , ex − 1] .

We shall calculate its (n, k)-th element

tn,k =
n!

k!
[xn]ex(ex − 1)k .



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 7 6 1 0 0 0
1 15 25 10 1 0 0
1 31 90 65 15 1 0
1 63 301 350 140 21 1


.
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tn,k =
n!

k!

∞∑
i=0

x i

i !

k∑
j=0

(
k

j

)
e jx(−1)k−j

=
n!

k!

∞∑
i=0

x i

i !

k∑
j=0

(
k

j

) ∞∑
`=0

j`x`

`!
(−1)k−j

=
n!

k!

∞∑
i=0

1

i !

k∑
j=0

(
k

j

)
jn−i

(n − i)!
(−1)k−j

=
1

k!

∞∑
i=0

k∑
j=0

(
k

j

)
n!

i !(n − i)!
jn−i (−1)k−j

=
1

k!

n∑
i=0

(
n

i

) k∑
j=0

(
k

j

)
jn−i (−1)k−j .
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This array has a production matrix that begins

1 1 0 0 0 0
0 2 1 0 0 0
0 0 3 1 0 0
0 0 0 4 1 0
0 0 0 0 5 1
0 0 0 0 0 6

 .
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FTRA for exponential Riordan arrays

We have used the Fundamental Theorem of exponential Riordan arrays,
which states that

[g(x), f(x)] · A(x) = g(x)A(f(x)).
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The A and the Z sequences of [g(x), f (x)]
We wish to associate two exponential power series A and Z to the Riordan
array M = [g(x), f (x)] so that some combination of A and Z will generate
the production matrix

P = M−1M.

We find the following.
If

A(x) = f ′(f̄ (x)) and Z (x) =
g ′(f̄ (x))

g(f̄ (x))
,

then the expression in x and y given by

exy (Z (x) + yA(x)) =
∞∑
n=0

∞∑
j=0

pn,jy
j x

n

n!

generates the production matrix P.
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Production matrix example 1
We consider the exponential Riordan array[

1

1− x
,

x

1− x

]
.

We have

n![xn]
1

1− x
= n![xn]

∞∑
i=0

x i

= n! · 1 = n!

Thus the first column of this array is given by n! or

1, 1, 2, 6, 24, 120, . . . .

tn,k =
n!

k!
[xn]

1

1− x

(
x

1− x

)k

=
n!

k!
[xn−k ](1− x)−(k+1)

=
n!

k!

(
n

k

)
.
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Production matrix example 2

f (x) =
x

1− x
=⇒ f ′(x) =

1

(1− x)2
.

Also, f̄ (x) = x
1+x . Hence

A(x) = f ′(f̄ (x)) =
1

(1− x
1+x )2

= (1 + x)2.

We have g(x) = 1
1−x and so g ′(x) = 1

(1−x)2 . Then

Z (x) =
g ′(f̄ (x))

g(f̄ (x))
= 1 + x .

Thus the production matrix is generated by

exy (1 + x + y(1 + 2x + x2)).
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Production matrix example 3

P =



1 1 0 0 0 0
1 3 1 0 0 0
0 4 5 1 0 0
0 0 9 7 1 0
0 0 0 16 9 1
0 0 0 0 25 11

 .

1 0 0 0 0 0 0

1 1 0 0 0 0 0

12 14 1 0 0 0 0

6 18 9 1 0 0 0

124 396 472 16 1 0 0

120 600 600 1200 925 251 0

720 4320 5400 2400 450 36 1
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[g , f ] in terms of A and Z

We have

[g(x), f (x)]−1 =

[
1

e
∫ x

0
Z(t)
A(t)

dt
,

∫ x

0

1

A(t)
dt

]
.

and

[g(x), f (x)] =

[
e
∫ x

0 Z(Rev
(∫ t

0
dt
A(t)

)
)dt
,Rev

(∫ x

0

dt

A(t)

)]
.

Alternatively, we can write

[g(x), f (x)] =

e∫ Rev

(∫ x
0

dt
A(t)

)
0

Z(t)
A(t)

dt
,Rev

(∫ x

0

dt

A(t)

) .
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A and Z for [g , f ]−1

Let the A sequence and the Z sequence of [g , f ]−1 be denoted by A∗(x)
and Z ∗(x). Let

[u, v ] = [g , f ]−1 =

[
e
∫ x

0
Z(t)
A(t)

dt
,

∫ x

0

1

A(t)
dt

]
.

Then

A∗(x) = v ′(v̄) =
1

A
(

Rev{
∫ x

0
1

A(t) dt}
) .

Also,

Z ∗(x) =
u′(v̄)

u(v̄)
= −

Z
(

Rev{
∫ x

0
1

A(t) dt}
)

A
(

Rev{
∫ x

0
1

A(t) dt}
) .
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Let M be the matrix with

A(x) =
1

1− x
, Z (x) =

1

1− x
.

We have ∫ x

0

1

A(t)
dt =

∫ x

0
(1− t) dt = x − x2

2
.

Now

Rev{x − x2

2
} = 1−

√
1− 2x

and hence

A∗(x) =
1

A(1−
√

1− 2x)
=
√

1− 2x .

In this case, A(x) = Z (x) implies that Z ∗(x) = −1.
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Exponential Riordan arrays and polynomial
families
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Orthogonal polynomials and exponential Riordan arrays

If
A(x) = 1 + αx + βx2

and
Z (x) = γ + δx

then the production matrix is tri-diagonal and the inverse array [g , f ]−1

will be the coefficient array of a family of polynomials. In this case we have

[g , f ]−1 =

[
1

e
∫ x

0
γ+δt

1+αt+βt2 dt
,

∫ x

0

1

1 + αt + βt2
dt

]

is the coefficient array for the polynomial family Pn(x) where

Pn(x) = (x − (α+ (n− 1)γ)Pn−1(x)− ((n− 1)β + (n− 1)(n− 2)δ)Pn−2,

with P0(x) = 1, P1(x) = x − α.
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Laguerre polynomials
We let A(x) = 1 + 2x + x2 and Z (x) = 1 + x .∫ x

0

1

1 + 2t + t2
dt =

x

1 + x
.

∫ x

0

1 + t

1 + 2t + t2
dt = ln(1 + x).

Then

e− ln(1+x) =
1

1 + x
.

Thus

[g , f ]−1 =

[
1

1 + x
,

x

1 + x

]
is the coefficient array of the family of orthogonal polynomials

Pn(x) = (x − (2n − 1))Pn−1(x)− (n − 1)2Pn−2(x).
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Modified Hermite polynomials

Consider the exponential Riordan array[
e

x2

2 , x

]
.

We have f (x) = x =⇒ f ′(x) = 1, and thus A(x) = 1. Also,

g(x) = e
x2

2 =⇒ g ′(x) = xg(x), and thus Z (x) = x . The production
matrix is then 

0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 2 0 1 0 0 0
0 0 3 0 1 0 0
0 0 0 4 0 1 0
0 0 0 0 5 0 1
0 0 0 0 0 6 0


.
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Modified Hermite polynomials

The production matrix is generated by

exy (x + y).

The associated orthogonal polynomials obey

Pn(x) = xPn−1(x)− (n − 1)Pn−2(x),

with P0(x) = 1, P1(x) = x .

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 176 / 288



2-orthogonal polynomials

We let A(x) = 1 + 3x + 3x2 + x3 and Z (x) = 1 + x + x2.∫ x

0

1

(1 + t)3
dt =

x(x + 2)

2(1 + x)2
.

∫ x

0

1 + t + t2

(1 + t)3
dt = ln(1 + x)− x2

2(1 + x)2
.

Then

[g , f ]−1 =

e− x2

2(1+x)2

1 + x
,
x(x + 2)

2(1 + x)2


is the coefficient array of the family of 2-orthogonal polynomials

Pn(x) = (x−(3n−2))Pn−1(x)−3(n−1)2Pn−2(x)−(n−1)(n−2)2Pn−3(x),

P0(x) = 1,P1(x) = x − 1,P2(x) = x2 − 5x + 1.
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We have

[g , f ] =

[
e1−x−

√
1−2x

√
1− 2x

, 1−
√

1− 2x

]
.

Note that the array [
1√

1− 2x
, 1−

√
1− 2x

]
is the coefficient array of the Bessel polynomials.
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We have

[g , f ] =



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
4 5 1 0 0 0 0 0

21 36 12 1 0 0 0 0
153 321 147 22 1 0 0 0

1410 3465 1980 415 35 1 0 0
15765 44010 29790 7890 945 51 1 0

207375 643965 499590 158130 24150 1869 70 1


where the first column elements

1, 1, 4, 21, 153, . . .

can be considered the moments of the family of polynomials (though we
should pair this with the second column - see later).
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The production matrix is 4-diagonal.

P =



1 1 0 0 0 0 0
3 4 1 0 0 0 0
2 12 7 1 0 0 0
0 12 27 10 1 0 0
0 0 36 48 13 1 0
0 0 0 80 75 16 1
0 0 0 0 150 108 19


.
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Generating function for the moments

The moments have the following continued fraction expression for the
ordinary generating function.

1

1− x −
3x2

1− 4x − 12x2

(.)
− 12x3

(.)(.)

−
2x3

(1− 4x − 12x2

(.)
− 12x3

(.)(.)
)(1− 7x − 27x2

(.)
− 36x3

(.)(.)
)

.
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2-Hankel transform



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
4 5 1 0 0 0 0 0

21 36 12 1 0 0 0 0
153 321 147 22 1 0 0 0

1410 3465 1980 415 35 1 0 0
15765 44010 29790 7890 945 51 1 0

207375 643965 499590 158130 24150 1869 70 1


Consider the two sequences an (the first column) and bn (the sum of first
and second column) as follows:

1, 1, 4, 21, 153, 1410, 15765, 207375, . . . .

1, 2, 9, 57, 474, 4875, 59775, 851340, . . . .
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2-Hankel transform

We define the 2 Hankel transform of (an, bn) to be

hn =

{
|ai+j−b i

2
c|0≤i ,j≤n if i is even

|bi+j−b i+1
2
c|0≤i ,j≤n if i is odd

Then

hn =
n∏

k=0

γ
b n−k

2
c

k

where in this case we have

γn = (n + 1)2(n + 2).

That is, γn is the sequence

2, 12, 36, 80, 150, 252, 392, . . . .
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We can recover the associated 2-orthogonal polynomials Pn(x) using
determinants as follows. We have

Pn(x) =
hn(x)

hn−1

where hn(x) is the same as the determinant hn, except that the last row is
given by 1, x , x2, . . ..
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Another example of 2-orthogonality

The exponential Riordan array

M =
[
e− tanh(x), tanh(x)

]
has production matrix

−1 1 0 0 0 0
0 −1 1 0 0 0
2 −2 −1 1 0 0
0 6 −6 −1 1 0
0 0 12 −12 −1 1
0 0 0 20 −20 −1

 .
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M =



1 0 0 0 0 0
−1 1 0 0 0 0
1 −2 1 0 0 0
1 1 −3 1 0 0
−7 12 −2 −4 1 0
3 −39 50 −10 −5 1

 .

Let an and bn be the sequences

1,−1, 1, 1,−7, 3, 97,−275,−2063, 15015, 53409, . . . ,

1, 0,−1, 2, 5,−36,−21, 958,−1527,−35816, 169655, . . . .
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The 2-Hankel transform of (an, bn) is given by

hn =
n∏

k=0

((k + 1)(k + 2))b
n−k

2
c =

n∏
k=0

k!.
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M−1 =
[
e− tanh(x), tanh(x)

]−1
=

[
ex , ln

√
1 + x

1− x

]
is the coefficient array of a family Pn(x) of 2-orthogonal polynomials. We
have

M−1 =



1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 5 3 1 0 0
1 12 14 4 1 0
1 49 50 30 5 1

 .

Pn(x) = (x + 1)Pn−1(x) + (n− 1)(n− 2)Pn−2(x)− (n− 1)(n− 2)Pn−3(x).
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An example related to the Stirling numbers

We let

A =

[
exe

(ex−1)2

2 , ex − 1

]
=

[
e

(ex−1)2

2 , x

]
· [ex , ex − 1] .

The array A begins

1 0 0 0 0 0 0
1 1 0 0 0 0 0
2 3 1 0 0 0 0
7 10 6 1 0 0 0

29 45 31 10 1 0 0
136 241 180 75 15 1 0
737 1428 1186 560 155 21 1


.
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The production matrix of A begins

PA =



1 1 0 0 0 0 0
1 2 1 0 0 0 0
2 2 3 1 0 0 0
0 6 3 4 1 0 0
0 0 12 4 5 1 0
0 0 0 20 5 6 1
0 0 0 0 30 6 7


,

with
A(x) = 1 + x Z (x) = 1 + x + x2.

Qn(x) = (x − n)Qn−1(x)− (n − 1)Qn−2(x)− (n − 1)(n − 2)Qn−3(x),

Q0(x) = 1,Q1(x) = x − 1,Q2(x) = x2 − 3x + 1.
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We let

B =

[
exe

e2x−1
2 ,

e2x − 1

2

]
.

The array B begins

1 0 0 0 0 0 0
2 1 0 0 0 0 0
6 6 1 0 0 0 0

24 34 12 1 0 0 0
116 208 112 20 1 0 0
648 1396 1000 280 30 1 0

4088 10232 9076 3480 590 42 1


.
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The production array of B begins

PB =



2 1 0 0 0 0 0
2 4 1 0 0 0 0
0 4 6 1 0 0 0
0 0 6 8 1 0 0
0 0 0 8 10 1 0
0 0 0 0 10 12 1
0 0 0 0 0 12 14


,

A(x) = 1 + 2x Z (x) = 2 + 2x .

Pn(x) = (x − 2n)Pn−1(x)− 2(n − 1)Pn−2(x),

P0(x) = 1,P1(x) + x − 2.
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We have the following product

A−1B =



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 6 6 1 0 0 0
1 10 21 10 1 0 0
1 15 55 55 15 1 0
1 21 120 215 120 21 1


.

This is the array [
ex , x +

x2

2

]
,

with
A(x) =

√
1 + 2x Z (x) = 1,

the number of k-matchings of the corona K ′(n) of the complete graph
K (n) and the complete graph K (1).
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We note that the exponential Riordan array

A =

[
exe

(ex−1)3

3 , ex − 1

]
=

[
e

(ex−1)3

3 , x

]
· [ex , ex − 1]

has a 5-diagonal production matrix.



0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0
2 0 2 1 0 0 0 0 0 0
6 6 0 3 1 0 0 0 0 0
0 24 12 0 4 1 0 0 0 0
0 0 60 20 0 5 1 0 0 0
0 0 0 120 30 0 6 1 0 0
0 0 0 0 210 42 0 7 1 0
0 0 0 0 0 336 56 0 8 1
0 0 0 0 0 0 504 72 0 9


Its inverse is then the coefficient array of a family of 3-orthogonal

polynomials.
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We have [
exe

(ex−1)3

3 , ex − 1

]−1

=

[
e−

x3

3 , ln(1 + x)

]
.

In general, the production matrix of[
exe

(ex−1)r

r , ex − 1

]
is generated by

exy (x r−1 + x r + y(1 + x)).

This production matrix is thus r + 2 diagonal. The inverse exponential
array [

e−
xr

r , ln(1 + x)
]

is the coefficient array of a family of r -orthogonal polynomials.
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An interesting Riordan array
The exponential Riordan array

M =

[
e−x

(1− x)3
,

x

1− x

]
has a production matrix that begins

2 1 0 0 0 0 0
3 4 1 0 0 0 0
0 8 6 1 0 0 0
0 0 15 8 1 0 0
0 0 0 24 10 1 0
0 0 0 0 35 12 1
0 0 0 0 0 48 14


.

Thus its inverse M−1 is the coefficient array of a family of orthogonal
polynomials.
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The inverse array

M−1 =

[
e

x
1+x

(1 + x)3
,

x

1 + x

]
has a production matrix that begins

−2 1 0 0 0 0 0
1 −4 1 0 0 0 0
2 4 −6 1 0 0 0
0 6 9 −8 1 0 0
0 0 12 16 −10 1 0
0 0 0 20 25 −12 1
0 0 0 0 30 36 −14


.

Hence its inverse, or M, is the coefficient array of a family of 2-orthogonal
polynomials. The corresponding 2-Hankel transform is equal to

∏n
k=0 k!

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 197 / 288



Riordan arrays and elliptic functions
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Figure: Karl Jacobi (1804-1851) & Karl Weierstrass (1815-1897)
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Jacobi Elliptic functions

We define sn(x , k) by

sn(x , k) = Rev

∫ x

0

dt√
(1− t2)(1− k2t2)

,

and then we define cn(x , k) and dn(x , k) as follows.

cn2(x) + sn2(x) = 1

dn2(x) + k2 sn2(x) = 1.

We then have
sn′(x) = cn(x) dn(x).

cn′(x) = − sn(x)dn(x).

dn′(x) = −k2 sn(x) cn(x).
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We have the following special values.

dn(x , 0) = 1.

sn(x , 0) = sin(x).

cn(x , 0) = cos(x).

sn(x , 1) = tanh(x).

cn(x , 1) = dn(x , 1) = sech(x).
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Consider the following Riordan array

(
1,

∫ x

0

dt√
(1− t2)(1− k2t2)

)−1

= (1, sn(x)).



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1

6

(
k2 + 1

)
0 1 0 0 0

0 0 1
3

(
k2 + 1

)
0 1 0 0

0 1
40

(
3k4 + 2k2 + 3

)
0 1

2

(
k2 + 1

)
0 1 0

0 0 1
45

(
8k4 + 7k2 + 8

)
0 2

3

(
k2 + 1

)
0 1



−1



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 1

6

(
−k2 − 1

)
0 1 0 0 0

0 0 1
3

(
−k2 − 1

)
0 1 0 0

0 1
120

(
k4 + 14k2 + 1

)
0 1

2

(
−k2 − 1

)
0 1 0

0 0 1
45

(
2k4 + 13k2 + 2

)
0 − 2

3

(
k2 + 1

)
0 1


.
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We see that sn(x , k) expands to give the sequence

0, 1, 0,−
k2 + 1

6
, 0,

k4 + 14k2 + 1

120
, 0,−

k6 + 135k4 + 135k2 + 1

5040
, 0,

k8 + 1228k6 + 5478k4 + 1228k2 + 1

362880
, 0, . . . .

Ignoring signs, the numerator coefficient array for this sequence of
polynomials begins


1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 14 1 0 0 0 0
1 135 135 1 0 0 0
1 1228 5478 1228 1 0 0
1 11069 165826 165826 11069 1 0


The bivariate generating function for this triangle can be expressed as a

continued fraction.
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1

1− x − xy −
12x2y

1− 9x − 9xy −
240x2y

1− 25x − 25xy −
1260x2y

1− 49x − 49xy −
4032x2y

1− · · ·

.

1

1− x −
xy

1−
12x

1 + 3
1
x −

9xy

1−
240

9
x

1 + 5
3
x −

25xy

1−
1260

25
x

1 + 7
5
x −

49xy

1− · · ·

.

1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, . . .

where the numbers are taken in groups of 4 (1 · 2 · 2 · 3 = 12 etc) for the “β” coefficients, and

the odd numbers two by two for the “α” coefficients (1 · 1 = 1, 3 · 3 = 9 etc).
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Elliptic functions

We recall that

[g(x), f (x)] =

e∫ Rev

(∫ x
0

dt
A(t)

)
0

Z(t)
A(t)

dt
,Rev

(∫ x

0

dt

A(t)

) .
Now let

A(t) =
√

(1− t2)(1− k2t2).

Then

Rev

(∫ x

0

dt

A(t)

)
= Rev

(∫ x

0

dt√
(1− t2)(1− k2t2)

)
= sn(x , k),

the elliptic sine function.

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 205 / 288



Furthermore, if

Z (t) = − t
√

1− k2t2

√
1− t2

,

then
Z (t)

A(t)
=
−t

1− t2

and ∫ sn(x ,k)

0

Z (t)

A(t)
dt =

[√
1− x2

]sn(x ,k)

0
= cn(x , k).

Thus

A(t) = A(t) =
√

(1− t2)(1− k2t2) and Z (t) = − t
√

1− k2t2

√
1− t2

results in
M = [g(x), f (x)] = [cn(x , k), sn(x , k)].
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Elliptic functions

To calculate the inverse array of [cn(x), sn(x)], we have

1

g(f̄ (x))
=

1

cn(sn−1(x))
=

1√
1− x2

.

Thus

M−1 = [(̧n), sn(x)]−1 =

[
1√

1− x2
,

∫ x

0

dt√
(1− t2)(1− k2t2)

]
.

We get

AM−1 =
1

cn(x) dn(x)
, ZM−1 =

sn(x)

cn(x)2
.
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Consideration of the case

A(x) = cn(x , k), Z (x) = cn(x , k)

leads to some interesting results. We have

∫ x

0

dt

A(t)
=

∫ x

0

dt

cn(t, k)

=
1√

1− k
log

(
dn(x) +

√
1− k sn(x)

cn(x)

)
.

Since A(x) = Z (x), we find that the inverse matrix [g , f ]−1 is given by[
e−x ,

1√
1− k

log

(
dn(x) +

√
1− k sn(x)

cn(x)

)]
.
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The production matrix of this inverse array begins



1 1 0 0 0 0 0
0 1 1 0 0 0 0
−1 −1 1 1 0 0 0
0 −3 −3 1 1 0 0

4k + 1 4k + 1 −6 −6 1 1 0
0 20k + 5 20k + 5 −10 −10 1 1

−16k2 − 44k − 1 −16k2 − 44k − 1 60k + 15 60k + 15 −15 −15 1


.
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The production matrix of [g , f ] begins

−1 1 0 0 0 0
0 −1 1 0 0 0
0 1 −1 1 0 0
0 0 3 −1 1 0
0 1− 4 · k 0 6 −1 1
0 0 5 · (1− 4 · k) 0 10 −1

 .
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For k = 1/4, PM−1 takes on the form

1 1 0 0 0 0 0
0 1 1 0 0 0 0
−1 −1 1 1 0 0 0
0 −3 −3 1 1 0 0
2 2 −6 −6 1 1 0
0 10 10 −10 −10 1 1
−13 −13 30 30 −15 −15 1


.
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This prompts us to look at cn(x , 1/4). As a generating function, this
expands to give the sequence

1, 0,−1, 0, 2, 0,−13, 0, 161, 0,−3094, 0, 87773, . . . .

We have
cn(x , 1/4) =

1

1 +
x2

1 +
x2

1 +
9x2

1 +
4x2

1 +
25x2

1 + · · ·

.

The coefficients are the squares of the interleaving sequence of odd
numbers with the natural numbers

1, 1, 3, 2, 5, 3, 7, 4, 9, 5, 11, 6, 13, 7, 15, 8, 17, 9, . . .

or an = 2(n+1)
3−(−1)n .
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We deduce that cn(x , 1/4) is the generating function of the moments of
the family of orthogonal polynomials defined by

Pn(x) = xPn−1(x) +

(
2(n − 1)

3− (−1)n

)2

Pn−2(x),

with

P0(x) = 1

P1(x) = x .

The Hankel transform of these moments is given by

hn = (−1)(n+1
2 )

n∏
k=0

(
2(k + 1)

3− (−1)k

)2(n−k)

.

This sequence begins

1,−1,−1, 9, 324,−291600,−2361960000, 937461924000000, . . .
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The coefficient array for Pn(x) begins

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 0 0 0
0 2 0 1 0 0 0
9 0 11 0 1 0 0
0 17 0 15 0 1 0

225 0 292 0 40 0 1


.

The first column elements Pn(0)

1, 0, 1, 0, 9, 0, 225, 0, 11025, 0, 893025, . . .

have e.g.f. given by 1√
1−x2

and they count the number of permutations of

in S2n whose cycles are all even. Tao has shown that

Pn(0) = (1 + x2)
n+1

2
dn

dxn
(1 + x2)

n−1
2 .
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The function dn(2x , 1/4) expands to give the sequence

1, 0,−1, 0, 17, 0,−433, 0, 20321, 0,−1584289, 0, 179967473, 0,−28151779537, . . . .

We have
dn(2x , 1/4) =

1

1 +
x2

1 +
16x2

1 +
9x2

1 +
64x2

1 +
25x2

1 + · · ·

.

The coefficients are the squares of the interleaving sequence of odd
numbers with multiples of 4

1, 4, 3, 8, 5, 12, 7, 16, 9, 20, 11, 24, 13, 28, 15, 32, . . . ,

or bn = (n+1)(3−(−1)n)
2 . The sequence bn/an is 1, 4, 1, 4, 1, 4, 1, 4, 1, 4, . . ..
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We note that

1/2 =
1

1−
1

1−
4

1−
1

1−
4

1−
1

1− · · ·

.
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We have seen that cn(x , 1/4) expands to give the sequence

1, 0,−1, 0, 2, 0,−13, 0, 161, 0,−3094, 0, 87773, . . . .

The un-aerated sequence

1,−1, 2,−13, 161,−3094, 8773, . . .

has generating function

1

1 + x −
x2

1 + 10x −
36x2

1 + 29x −
225x2

1 + 58x − · · ·

.

Here, the α sequence is −(n2 + (2n + 1))2 and the β sequence is
((n + 1)(2n + 1))2.
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The un-aerated sequence

1,−1, 2,−13, 161,−3094, 8773, . . .

is the moment sequence for the family of orthogonal polynomials

Pn(x) = (x + ((n− 1)2 + (2n− 1)2))Pn−1(x)− ((n− 1)(2n− 3))2Pn−2(x),

with

P0(x) = 1

P1(x) = x + 1

The Hankel transform of this sequence is then given by

hn =
n∏

k=0

((k + 1)(2k + 1))2(n−k).
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The Toda chain equations
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A little bit of history

I The FPU experiment

I The Korteweg-deVries (KdV) equation

I The Toda chain
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The FPU experiment
In the summer of 1953 Fermi, Pasta, Ulam (and Mary Tsingou) conducted
numerical experiments on a linear chain of nearest neighbour interactions
using non-linear restoring forces. This numerical experiment is often
regarded as the birth of non-linear science.

mq̈j = k(qj+1 − 2qj + qj−1)(1 + α(qj+1 − qj−1)).
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Korteweg-deVries equation
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Korteweg-deVries equation

ut + uux + uxxx = 0.

For example,

u(x , t) = 3vsech2

√
v

2
(x − vt).
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Integrable systems
The KdV equation has integrals of motion given by∫ ∞

−∞
P2n−1(u, ux , uxx , . . .) dx ,

where

P1 = u, Pn = −dPn−1

dx
+

n−2∑
i=1

PiPn−1−i .

Example. Take

u(x , t) =
1

2
sech2

(
x − t

2

)
.

Then the sequence 1
2

∫∞
−∞ P2n−1(x) dx gives

1,
1

3
,

1

5
,

1

7
, . . . .
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The Toda chain equation

In 1967, Morikazu Toda developed an integrable system inspired by the
FPU experiment by using exponential restoring forces. The Toda chain
equation is

ÿn = eyn+1−yn − eyn−yn−1 .

By setting
βn = eyn+1−yn

and
αn = ẏn,

we obtain
β̇n = eyn+1−yn(ẏn+1 − ẏn) = βn(αn+1 − αn),

and
α̇n = ÿn = βn − βn−1.
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Toda
Thus from the equation

ÿn = eyn+1−yn − eyn−yn−1

we get the equivalent system

β̇n = βn(αn+1 − αn), α̇n = βn − βn−1.

By letting

yn = log
τn−1

τn
, βn =

τn−1τn+1

τ2
n

, αn =
d

dt
log

τn−1

τn
,

we obtain the bilinear Toda equation

τ
′′
n τn − (τ

′
n)2 = τn−1τn+1.

Note that

αn =
d

dt
log

τn−1

τn
=
τ̇n−1

τn−1
− τ̇n
τn
.
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The Hankel transform 2

We define the Hankel transform of the sequence an to be the sequence hn
of Hankel determinants

h0 = |a0|, h1 =

∣∣∣∣a0 a1

a1 a2

∣∣∣∣ , h2 =

∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣ , . . . ,
hn = |ai+j |0≤i ,j≤n.

Example

For each of the three sequences Cn, Cn+1 and Cn/2
1+(−1)n

2 , we have

hn ≡ 1.
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Orthogonal polynomials - revision

Let Pn(x) be a sequence of polynomials that obey a three-term recurrence

Pn+1(x) = (x − αn)Pn(x)− βnPn−1(x),

with β0P−1(x) = 0 and P0(x) = 1. Then Pn(x) is a family of (monic)
orthogonal polynomials. We have∫

PnPmd µ(x) = δmn,

for an appropriate measure µ(x). Letting an =
∫
xndµ(x) then, for

instance,

P2(x) =

∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

1 x x2

∣∣∣∣∣∣ /
∣∣∣∣a0 a1

a1 a2

∣∣∣∣ = h2(x)/h1
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tau-function

We have

βn =
hn−1hn+1

h2
n

and

αn =
h∗n+1

hn+1
− h∗n

hn
,

where for instance

h∗2 =

∣∣∣∣∣∣
a0 a1 a3

a1 a2 a4

a2 a3 a5

∣∣∣∣∣∣ .
Question: when can τn = hn provide a solution to the Toda chain
equations?
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Example

We consider the matrix

A = [1, ex − 1] · [ex , x ] =
[
ee

x−1, ex − 1
]
.

Then PA begins 
1 1 0 0 . . .
1 2 1 0 . . .
0 2 3 1 . . .
0 0 3 4 . . .

. . . . . .


The inverse matrix

A−1 = [e−x , ln(1 + x)]

is the coefficient array of the Charlier polynomials.
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Toda Example 1
We consider the exponential Riordan array[

e−xe
t
, ln(1 + x)

]
.

We have [
e−xe

t
, ln(1 + x)

]−1
=
[
ee

t(ex−1), ex − 1
]
.

The production matrix of this inverse has generating function

eyz(et(1 + z) + y(1 + z)),

corresponding to
αn(t) = n + et , βn(t) = net .

Then we have

β̇n = βn(αn − αn−1), α̇n = βn+1 − βn.
We also have

dPn+1(x , t)

dt
= −(n + 1)etPn(x , t) = −βn+1Pn(x , t).
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Moments

We note that the moments µn =
∫
xndµ(x) for the above orthogonal

polynomials are given by

µn(t) =
n∑

k=0

{
n

k

}
ekt ,

where {
n

k

}
= S(n, k) =

1

k!

k∑
j=0

(−1)k−j
(
k

j

)
jn.

In particular, µn(0) are the Bell numbers.
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Toda Example 2
The exponential Riordan array 1√

1− 2xtanh(t)− x2sech2(t)
, ln

√
1 + xe−tsech(t)

1− xetsech(t)


is the coefficient array of the family of orthogonal polynomials Pn(t) for
which

βn(t) = −n2sech2(t), αn(t) = −(2n + 1)tanh(t).

Again, we have the Toda equations

β̇n = βn(αn − αn−1),

and
α̇n = βn+1 − βn.

We also have

dPn+1(x , t)

dt
= (n + 1)2sech(t)2Pn(x , t) = −βn+1Pn(x , t).
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Moments

The moments mn of the previous family of orthogonal polynomials are
given by the first column of the inverse array which is[

sech(x + t)

sech(t)
, sinh(t)

sech(x + t)

sech(t)

]
.

Thus the moments mn are given by

mn = n![xn]
sech(x + t)

sech(t)
=

1

sech(t)

dn

dtn
sech(t).

The Hankel transform of mn is given by

hn = (−1)(n+1
2 )sech(t)n(n+1)

n∏
k=0

(k!)2.
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Toda Example 3
The exponential Riordan array[

e−2(z−t)x+x2
, x
]

is the coefficient array of a family of orthogonal polynomials with

βn = −2n, αn = 2(z − t).

We have the Toda equations

β̇n = βn(αn − αn−1),

and
α̇n = βn+1 − βn.

We also have

dPn+1(x , t)

dt
= 2(n + 1)Pn(x , t) = βn+1Pn(x , t).
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Moments

The moments mn of the previous family of orthogonal polynomials are
given by the first column of[

e−2(z−t)x+x2
, x
]−1

=
[
e2(z−t)x−x2

, x
]
.

We obtain
mn = Hn(z − t)

where Hn(x) is the n-th Hermite polynomial. The Hankel transform of mn

is given by

hn = (−2)(n+1
2 )

n∏
k=0

k!

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 237 / 288



Generalized Toda Example 1
The exponential Riordan array[

1

(1 + tx)
, ln

(
1 + (t + 1)x

1 + tx

)]
is the coefficient array of the family of orthogonal polynomials Pn(x , t)
whose coefficients are given by

αn = n + (2n + 1)t, βn = n2t(t + 1).

Then αn and βn satisfy the modified Toda equations

β̇n =
1

t(t + 1)
βn(αn − αn−1),

and

α̇n =
1

t(t + 1)
(βn+1 − βn).

We also have

dPn+1(x , t)

dt
= −(n + 1)2Pn(x , t) = − βn+1

t(t + 1)
Pn(x , t).
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Generalized Toda Example 2
The exponential Riordan array[

1

1 + tx
,

x

1 + tx

]
is the coefficient array of the family of orthogonal polynomials whose
coefficients are given by

αn = (2n + 1)t, βn = n2t2.

Then αn and βn satisfy the modified Toda equations

β̇n =
1

t2
βn(αn − αn−1),

and

α̇n =
1

t2
(βn+1 − βn).

We also have

dPn+1(x , t)

dt
= −(n + 1)2Pn(x , t) = −βn+1

t2
Pn(x , t).

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 239 / 288



Integer sequences
We can describe integer sequences in a number of ways. Two common
ways are

I Generating function

I Recurrence

Example

I

rn = [xn]
1

1− rx
I

Fn = [xn]
x

1− x − x2

I

Fn = Fn−1 + Fn−2,

with F0 = 0,F1 = 1
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Integer sequences

Sometimes, the recurrence may be more involved.

Example

an = an−1 +
n−3∑
i=0

aian−1−i

with
a0 = 0, a1 = 2, a2 = 1.

This gives us the sequence

0, 2, 1, 1, 3, 6, 14, 33, 79, 194, . . . .
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Somos sequences

Somos 4.

an =
αan−1an−3 + βa2

n−2

an−4
, n ≥ 4.

Somos 5.

an =
αan−1an−4 + βan−2an−3

an−5
, n ≥ 5.

Somos 6.

an =
αan−1an−5 + βan−2an−4 + γa2

n−3

an−6
, n ≥ 6.
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Binomial transform

If an = [xn]g(x), then the sequence

bn =
n∑

k=0

(
n

k

)
rn−kbk ,

where

bn = [xn]
1

1− rx
g

(
x

1− rx

)
=

(
1

1− rx
,

x

1− rx

)
· g(x)

is called the r -th binomial transform of an. The inverse binomial transform
corresponds to r = −1.
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INVERT transform

If
an = [xn]g(x),

then the r -th INVERT transform of the sequence an has g.f. given by

g(x)

1− rxg(x)
= (g(x), xg(x)) · 1

1− rx
.

The r -th inverse INVERT transform has g.f. given by

g(x)

1 + rxg(x)
.
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Reversion of a sequence

If f (x) is a power series with f (0) = 0, then the reversion of f , denoted by

f̄ (x) = Rev{f }(x)

is the solution u of
f (u) = x

such that
u(0) = 0.

If an = [xn]g(x) is sequence a0 6= 0, we shall call reversion of an the
sequence bn such that

bn = [xn]
1

x
Rev{xg(x)}.

Example The reversion of the binomial transform of a sequence an is the
inverse INVERT transform of the reversion of an.
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Reversion of a sequence
If an = [xn]g(x) then its reversion bn is the first column of

(g(x), xg(x))−1

We have (
1

1− x
g

(
x

1− x

)
,

x

1− x
g

(
x

1− x

))−1

=

((
1

1− x
,

x

1− x

)
· (g(x), xg(x))

)−1

= (g(x), xg(x))−1 ·
(

1

1 + x
,

x

1 + x

)
=

(
1

x
Rev{xg(x)},Rev{xg(x)}

)
·
(

1

1 + x
,

x

1 + x

)
=

(
1

x
Rev{xg(x)} 1

1 + x 1
xRev{xg(x)}

, . . .

)
.
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Quadratic equations

au2 + bu + c = 0

u =
−b ±

√
b2 − 4ac

2a
.

Example

u(1− u) = x or u2 − u + x = 0

The solution is

u =
1±
√

1− 4x

2
.

We ask that u(0) = 0. This gives us

Rev{x(1− x)} =
1−
√

1− 4x

2
.
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Quadratic equations
The Taylor series expansion of 1−

√
1−4x
2 at 0 is

x + x2 + 2x3 + 5x4 + 14x5 + 42x6 + · · · .

The numbers Cn given by the non-zero coefficients

1, 1, 2, 5, 14, 42, 429, . . .

are the Catalan numbers. We have

Cn =
1

n + 1

(
2n

n

)
=

n−1∑
i=0

CiCn−1−i

We write

C (x) =
1−
√

1− 4x

2x
= 1 + x + 2x2 + 5x3 + · · ·
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Quadratic equations

We have

C (x) =
1−
√

1− 4x

2x
.

Then
au2 + bu + c = 0

has solution
u = −c

b
C
(ac
b2

)
.
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Cubic equations
Trigonometric approach. Starting with

ax3 + bx2 + cx + d = 0

use the substitution

x = t − b

3a

to get the depressed cubic equation

t3 + pt + q = 0.

Set
t = u cos θ

and compare with the identity

4 cos3 θ − 3 cos θ − cos(3θ) = 0

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 250 / 288



Cubic equations
Consider the equation

u(1− u2) = x or u3 − u + x = 0

We find that

u =
2√
3

sin

(
1

3
sin−1

(√
27x

2

))
is the solution with u(0) = 0. This expression is the generating function
for the integer sequence

0, 1, 0, 1, 0, 3, 0, 12, 0, 55, 0, 273, 0, 1428, 0, . . .

where the numbers tn that begin

1, 1, 3, 12, 55, . . .

are the ternary numbers

tn =
1

2n + 1

(
3n

n

)
.
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The Hankel transform
We define the Hankel transform of the sequence an to be the sequence hn
of Hankel determinants

h0 = |a0|, h1 =

∣∣∣∣a0 a1

a1 a2

∣∣∣∣ , h2 =

∣∣∣∣∣∣
a0 a1 a2

a1 a2 a3

a2 a3 a4

∣∣∣∣∣∣ , . . . ,
hn = |ai+j |0≤i ,j≤n.

Example

Each of the three sequences

1, 1, 2, 5, 14, 42, . . . ,

1, 2, 5, 14, 42, 429, . . . ,

1, 0, 1, 0, 2, 0, 5, 0, 14, 0, . . . ,

has Hankel transform
1, 1, 1, 1, . . . .
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Hankel transform of the ternary numbers
The Hankel transforms of the sequences

1, 1, 3, 12, 55, 273, . . . ,

1, 3, 12, 55, 273, . . . ,

1, 0, 1, 0, 3, 0, 12, 0, 55, 0, 273, . . .

are given by the sequences

1, 2, 11, 170, 7429, 920460, . . . ,

respectively
1, 3, 26, 646, 45885, . . . ,

respectively

1, 1, 2, 6, 33, 286, 4420, 109820, 4799134, . . . .
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 0 1 0
1 −1 1
0 1 0
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Hankel transform

A classical result says that

βn =
hn−1hn+1

h2
n

and

αn =
h′n
hn
−

h′n−1

hn−1
+ 0n,

where, for example,

h′2 =

∣∣∣∣∣∣
a0 a1 a3

a1 a2 a4

a2 a3 a5

∣∣∣∣∣∣
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Hankel transform
Let hn be the Hankel transform of a sequence an = [xn]g(x). Then hn is
also the Hankel transform of

I (−1)nan
I the r -th binomial transform

∑n
k=0

(n
k

)
rn−kak ,

I the r -th INVERT transform of an, with g.f. g(x)
1−rxg(x) .

Let an have Hankel transform

h0, h1, h2, . . . .

Then the sequence bn with

bn = [xn]
1

1− x − x2g(x)

has Hankel transform
1, h0, h1, h2, . . .
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Elliptic curves
An elliptic curve can be defined by any of the equations

I y2 = x3 + Ax + B
I y2 = 4x3 − g2x − g3

I y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

Elliptic curves have a group structure: points can be added. The point at
infinity is the identity.
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Adding points on an elliptic curve

(after Silverman)
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Adding a point to itself

(after Silverman)
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Elliptic curve: parametrisation
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Weierstrass ℘ function

I

℘(z ;ω1, ω2) =
1

z2
+

∑
0 6=ω∈Zω1+Zω2

1

(z − ω)2
− 1

ω2
.

I

℘′2 = 4℘3 − g2℘− g3

I (℘, ℘′) provides a parametrisation for the curve y2 = 4x3 − g2x − g3.
I

σ(z) = z
∏

0 6=ω∈Ω

(
1− z

ω

)
· e

z
ω

+ 1
2

(
z
ω2

)

I

ζ(z) =
σ′(z)

σ(z)
=

1

z
+
∑

06=ω∈Ω

(
1

z − ω
+

1

ω
+

z

ω2

)
I

ζ ′(z) = −℘⇒ ℘ = − d2

dz2
lnσ
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Weierstrass σ and division polynomials ψn

If P = (0, 0) = (℘(z), ℘′(z)) is a point on the elliptic curve E, then

(nP)x = −ψn−1(z)ψn+1(z)

ψn(z)2

and

(nP)y =
ψ2n

2ψ4
n

where

ψn(z) =
σ(nz)

σ(z)n2 .
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We have the Kiepert formula (1873)

ψn =
σ(nu)

σ(u)n2
=

1

(−1)n−1(1!2! · · · (n − 1)!)2

∣∣∣∣∣∣∣∣∣∣
℘′(u) ℘′′(u) · · · ℘(n−1)(u)

℘′′(u) ℘′′′(u) · · · ℘(n)(u)
...

...
. . .

...

℘(n−1)(u) ℘(n)(u) · · · ℘(2n−3)(u)

∣∣∣∣∣∣∣∣∣∣
Swart formula (2003)

sn = (−1)
n(n+1)

2 (xn−1 − x̄)(xn−2 − x̄)2 · · · (x1 − x̄)ns0

(
s−1

s0

)n

.
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Elliptic curve: nP
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Sequences from elliptic curves
We consider the equation

y2 − 3xy − y = x3 − x

Solving for y , we find that

y =
1 + 3x +

√
1 + 2x + 9x2 + 4x2

2
.

This expands to give the sequence

1, 2, 2,−1,−3, 7, 4,−38, 27, 175, . . . .

We shed the first two terms to arrive at

2,−1,−3, 7, 4,−38, 27, 175,−384,−546, . . . ,

with g.f. of

g(x) =

√
1 + 2x + 9x2 + 4x3 − x − 1

2x2
=

(
2 + x

1 + x
,
−x2(2 + x)

(1 + x)2

)
· C (x).
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Sequences from elliptic curves

This sequence has general term

an =
n∑

k=0

k+1∑
j=0

(
k + 1

j

)(
n − j

n − 2k − j

)
(−1)n−k−j2k+1−jCk .

The sequence

2,−1,−3, 7, 4,−38, 27, 175,−384,−546, . . .

has a Hankel transform that begins

2,−7,−57, 670, 23647,−833503, . . . ,

which is a (1, 16) Somos 4 sequence.
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The shifted sequence

−1,−3, 7, 4,−38, 27, 175,−384,−546, . . .

has generating function given by

−
(

1 + 4x

1 + x + 4x2
,

x3(1 + 4x)

(1 + x + 4x2)2

)
· C (x).

It has a Hankel transform that begins

−1,−16, 113, 3983,−140576,−14871471, . . . .

This is also a (1, 16) Somos 4 sequence.
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We now form the generating function

1

1− x + x2g(x)
=

2

1− 3x +
√

1 + 2x + 9x2 + 4x3

which expands to give the sequence

1, 1,−1,−2, 4, 3,−21, 12, 98,−198,−322, . . .

with Hankel transform

1,−2,−7, 57, 670,−23647, . . . .

We can express the generating function as(
1

1− 3x
,−x(2 + x2)

(1− 3x)2

)
· C (x).
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We revert this last sequence to get the sequence with g.f.

1 + 3x −
√

1 + 6x + 9x2 − 4x3 − 8x4

2x3
=

1 + 2x

1 + 3x
C

(
x3(1 + 2x)

(1 + 3x)2

)
.

This sequence begins

1,−1, 3,−8, 22,−59, 155,−396, 978,−2310, 5122, . . . .

Its Hankel transform is given by

1, 2, 1,−7,−16,−57,−113, 670, 3983, 23647, 140576, . . . ,

which is a (1,−2) Somos 4 sequence, which coincides with the elliptic
divisibility sequence of the curve.
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Elliptic divisibility sequence

Thus we have recovered the elliptic divisibility sequence of the elliptic curve

y2 − 3xy − y = x3 − x .

E =ellinit([−3, 0,−1,−1, 0]);
P = [0, 0];
z=ellpointtoz(E,P);
al =List();
for(i = 1, 10,listput(al,round(ellsigma(E,i ∗ z)/ellsigma(E,z)i

2
)));al

[1, 1, 2, 1,−7,−16,−57,−113, 670, 3983]
or
for(i = 1, 10, listput(al,subst(elldivpol(E,i),x,0)));al
[1, 1, 2, 1,−7,−16,−57,−113, 670, 3983]
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Coordinates of nP on y 2 − 3xy − y = x3 − x
We have the following (x , y) coordinates for nP on the curve
y2 − 3xy − y = x3 − x , where P = [0, 0].

(nP)x 0 −2 −1
4 14 16

49
−399
256

−1808
3249

(nP)y 0 −3 5
8 78 55

343
−11921

4096
68464

185193
y
x 1 3

2 −5
2

39
7

55
122

703
912 −4279

6441

We form the continued fraction

1

1 + x −
2x2

1 + 3x
2 −

x2

4

1− 5x
2 +

14x2

1 +
39x

7
+

16x2

49

1 + 55x
112 −

399x2

256

1− . . .

.
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The continued fraction
1

1 + x −
2x2

1 + 3x
2
−

x2

4

1− 5x
2

+
14x2

1 +
39x

7
+

16x2

49

1 + 55x
112
−

399x2

256

1− . . .

expands to give the sequence

1,−1, 3,−8, 22,−59, 155,−396, 978,−2310, 5122, . . .

with g.f (
1 + 2x

1 + 3x
,
x3(1 + 2x)

(1 + 3x)2

)
· C (x).

We have

an =
n∑

k=0

k+1∑
j=0

(
k + 1

j

)(
n − k − j

n − 3k − j

)
2j(−3)n−k−jCk .
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We note that the second binomial transform of the sequence

1,−1, 3,−8, 22,−59, 155,−396, 978,−2310, 5122, . . .

is the sequence with g.f.(
1

(1 + x)(1− 2x)
,

x3

(1 + x)2(1− 2x)2

)
· C (x).

This is the sequence

1, 1, 3, 6, 14, 33, 79, 194, 482, 1214, 3090, . . . .

Now recall that the recurrence

an = an−1 +
n−3∑
i=0

aian−1−i

with
a0 = 0, a1 = 2, a2 = 1,

has solution
0, 2, 1, 1, 3, 6, 14, 33, 79, 194, . . . .
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Elliptic curves and Riordan arrays

We have seen that the elliptic curve

E : y2 − 3xy − y = x3 − x

gives rise to the following Riordan arrays.

I
(

2+x
1+x ,−

x2(2+x)
(1+x)2

)
I
(

1+4x
1+x+4x2 ,

x3(1+4x)
(1+x+4x2)2

)
I
(

1
1−3x ,

x(2+x2)
(1−3x)2

)
I
(

1+2x
1+3x ,

x3(1+2x)
(1+3x)2

)
I
(

1
1−x−2x2 ,

x3

(1−x−2x2)2

)
.
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y 2 − xy − y = x3 − x2 − x and Motzkin paths
We solve

y2 − xy − y = x3 − x2 − x

to get the the sequence

0, 1, 1, 0, 1, 1, 3, 5, 12, 24, 55, 119, 272, . . .

with g.f. 1+x−
√

1−2x−3x2+4x3

2 . The sequence

1, 0, 1, 1, 3, 5, 12, 24, 55, 119, 272, . . .

(A090345, Motzkin paths with no level steps at even levels) has g.f.

g(x) =
1− x −

√
1− 2x − 3x2 + 4x3

2x2
= C

(
x2

1− x

)
.

We have

g(x) =
1

1−
x2

1− x −
x2

1−
x2

1− x −
x2

1− · · ·

.
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y 2 − xy − y = x3 − x2 − x and Motzkin paths
We form the g.f.

1

1− x − x2g(x)
=

1− x −
√

1− 2x − 3x2 + 4x3

2x2(1− x)
,

which expands to give the sequence

1, 1, 2, 3, 6, 11, 23, 47, 102, 221, 493, . . .

or the number of Motzkin paths with no level steps at odd level
(A090344). We have

g(x) =
1

1− x −
x2

1−
x2

1− x
x2

1−
x2

1− · · ·

.
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y 2 − xy − y = x3 − x2 − x and Narayana numbers

We now revert this last sequence to get the sequence (A129509)

1,−1, 0, 2,−4, 3, 5,−20, 29,−1,−94, . . .

with g.f.

1 + x + x2 −
√

1 + 2x + 3x2 − 2x3 + x4

2x3
=

1

1 + x + x2
C

(
x3

(1 + x + x2)2

)
.

These numbers are the diagonal sums of the signed Narayana triangle



1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
1 3 1 0 0 0 0
−1 −6 −6 −1 0 0 0
1 10 20 10 1 0 0
−1 −15 −50 −50 −15 −1 0
1 21 105 175 105 21 1
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y 2 − xy − y = x3 − 2x2 − x and generalized Narayana
numbers
In a similar fashion, for the curve

y2 − xy − y = x3 − 2x2 − x

we get the sequence

1,−1,−1, 4,−4,−5, 23,−28,−28, 164,−232, . . .

with g.f.

1 + x + 2x2 −
√

1 + 2x + 5x2 + 4x3

2x3
=

(
1

1 + x + 2x2
,

x3

(1 + x + 2x2)2

)
· C(x).

This is given by the diagonal sums of the generalized Narayana triangle

1 0 0 0 0 0 0
−1 −2 0 0 0 0 0
1 5 4 0 0 0 0
−1 −9 −18 −8 0 0 0
1 14 50 56 16 0 0
−1 −20 −110 −220 −160 −32 0
1 27 210 645 840 432 64
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The last triangle has bivariate g.f. given by

1

1 + x + 2xy −
x2y

1 + x + 2xy −
x2y

1− · · ·
and so the sequence has g.f. given by

1

1 + x + 2x2 −
x3

1 + x + 2x2 −
x3

1− · · ·

.

Using the coordinates of n[0, 0] on the curve, this is equivalent to

1

1 + x +
2x2

1 + x
2
−

x2

4

1− 7x
2

+
18x2

1 + 41x
9

+
16x2

81

1− · · ·
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The family of elliptic curves

y2 − rxy − y = x3 − rx2 − x

gives rise to the integer sequences with g.f.(
1− (r + 1)x

1− rx − rx2
,
x3(1− (r + 1)x)

(1− rx − rx2)2

)
· C (x).

The Hankel transform of these sequences is the elliptic divisibility sequence
of the corresponding curve. Taking the (r + 1)-st binomial transform
followed by an inverse (r + 2)-nd INVERT transform of this sequence we
obtain the sequence with g.f. given by(

1

1 + (r + 2)x + x2
,
x(2 + r + (r + 1)x2)

(1 + (r + 2)x + x2)2

)
· C (x).

This latter sequence is given by the diagonal sums of
(nk)

n−k+1 times the
Riordan array (

1,−x(1− (r + 1)x)

1− (r + 2)x

)
.
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Somos 6 and ASMs
We consider the hyper-elliptic curve

y2 − (1− x + 2x3)y − x4(1− x2) = 0.
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Somos 6 and ASMs
Solving for y gives the generating function for the sequence∑b n+1

3
c

k=0

(n−k+1
2k

)
(−1)kCk which begins

1, 1, 0,−2,−5,−7,−4, 10, 38, 70, 68, . . .

Its generating function is given by(
1− x2

1− x + 2x3
,

x4(1− x2)

(1− x + 2x3)2

)
· C (x).

Its Hankel transform is

1,−1, 1, 2,−2, 1, 3,−3, 1, 4,−4, 1, 5,−5 . . .

which is a simple Somos 6 sequence

en =
−en−1en−5 + en−2en−4 + e2

n−3

en−6
.
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Somos 6 and ASMs
The reversion of the sequence

1, 1, 0,−2,−5,−7,−4, 10, 38, 70, 68, . . .

begins

1,−1, 2,−3, 7,−14, 36,−85, 228,−587, 1612,−4354, 12166, . . .

Its generating function is

2√
3

sin
(

1
3 sin−1

( √
27x

2
√

1+x

))
√

1 + x
.

Its Hankel transform is given by

1, 1, 2, 6, 33, 286, . . . .

This is the number of alternating sign (2n + 1)× (2n + 1) matrices
symmetric with respect to both horizontal and vertical axes.
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Somos 6 and ASMs
In fact, the reversion sequence

1,−1, 2,−3, 7,−14, 36,−85, 228,−587, 1612,−4354, 12166, . . .

is given by

(−1)n
b n

2
c∑

k=0

(
n − k

k

)
tk ,

which has the same Hankel transform as the aeration

1, 0, 1, 0, 3, 0, 12, 0, 55, 0, 273, . . .

of the ternary numbers tn. [Trivially, the aerated ternary numbers are the
reversion of the solution to

y2 = x6 − 2x4 + x2

]
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Somos 6 and special Riordan arrays

We finish by noting that the sequences with g.f.(
1

1− rx − x2 − rx3
,

x4

(1− rx − x2 − rx3)2

)
· C (x)

have Hankel transforms that are (1, 1− r2, r2 − 1) Somos 6 sequences.
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In conclusion, we see that the Hankel transforms of the inversions of
solutions of elliptic and hyper-elliptic curve equations can count
combinatorially significant objects. These links deserve further study.

D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999.
A. N. W. Hone, Elliptic curves and quadratic recurrence sequences. Bulletin of the London
Mathematical Society 37 (2005) 161171.
Yuri N. Fedorov and Andrew N. W. Hone, Sigma-function solution to the general Somos-6
recurrence via hyperelliptic Prym varieties December 2, 2015, arXiv:1512.00056
I. M. Gessel and Guoce Xin, The generating function of ternary trees and continued fractions,
Electron. J. Combin.,13 (2006), R53.
C. Krattenthaler, Advanced determinant calculus, Sem. Lothar. Combin.,42, (1999), Article
B42q, 67pp.
J. W. Layman, The Hankel transform and some of its properties,J. Integer Seq.,4, (2001),
Article 01.1.5
L. W. Shapiro, S. Getu, W-J. Woan, and L.C. Woodson, The Riordan group,Discr. Appl.
Math.,34, (1991), 229-239.
Rachel Shipsey: Elliptic Divisibility Sequences. PhD thesis, Goldsmiths, University of London
(2001). Available at http://homepages.gold.ac.uk/rachel/.
Christine Swart: Sequences related to elliptic curves. PhD thesis, Royal Holloway, University of
London (2003).

Morgan Ward: Memoir on Elliptic Divisibility Sequences. American Journal of Mathematics 70

(1948) 3174.

P. Barry (WIT) Riordan arrays and orthogonal polynomials February, 2017 288 / 288


