Some Optimization Problems in Quantum Information Science

Chi-Kwong LI (Ferguson Professor) College of William and Mary, Virginia, (Affiliate member) Institute for Quantum Computing, Waterloo

・ロト ・日ト ・ヨト ・ヨト

• Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.

イロン 不同 とうほどう ほどう

æ

- Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.
- Quantum operations / channels are represented by trace preserving completely positive maps that admit the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

イロト イヨト イヨト --

3

Da C

- Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.
- Quantum operations / channels are represented by trace preserving completely positive maps that admit the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

 In quantum science, one needs to manipulate quantum states using quantum operations.

イロト イヨト イヨト イヨト 二日

SQ P

- Mathematically, quantum states are represented by density matrices, i.e., positive semidefinite matrices with trace 1.
- Quantum operations / channels are represented by trace preserving completely positive maps that admit the operator sum representation

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

- In quantum science, one needs to manipulate quantum states using quantum operations.
- One may also want to estimate the change of a quantum states after they go through a certain quantum channel.

General Questions

Interpolation and Approximation Problems

Let S be a set of quantum operations from M_n to M_m .

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

General Questions

Interpolation and Approximation Problems

Let S be a set of quantum operations from M_n to M_m . Suppose

$$\mathcal{F}_1 = \{\rho_1, \dots, \rho_k\} \subseteq M_n$$
 and $\mathcal{F}_2 = \{\sigma_1, \dots, \sigma_k\} \subseteq M_m$

are two families of density matrices.

・ 同下 ・ ヨト ・ ヨト

General Questions

Interpolation and Approximation Problems

Let $\mathcal S$ be a set of quantum operations from M_n to M_m . Suppose

$$\mathcal{F}_1 = \{\rho_1, \dots, \rho_k\} \subseteq M_n$$
 and $\mathcal{F}_2 = \{\sigma_1, \dots, \sigma_k\} \subseteq M_m$

are two families of density matrices.

 $\bullet\,$ Determine the conditions for the existence of $\Phi\in \mathcal{S}$ such that

$$\Phi(\rho_j) = \sigma_j$$
 for all $j = 1, \dots, k$.

(4月) トイヨト イヨト

Interpolation and Approximation Problems

Let $\mathcal S$ be a set of quantum operations from M_n to M_m . Suppose

$$\mathcal{F}_1 = \{\rho_1, \dots, \rho_k\} \subseteq M_n$$
 and $\mathcal{F}_2 = \{\sigma_1, \dots, \sigma_k\} \subseteq M_m$

are two families of density matrices.

 $\bullet\,$ Determine the conditions for the existence of $\Phi\in \mathcal{S}$ such that

$$\Phi(\rho_j) = \sigma_j \qquad \text{for all } j = 1, \dots, k.$$

• If such a quantum operation does not exist, what are the maximum or minimum "distance" measure between

$$(\sigma_1, \ldots, \sigma_k)$$
 and $(\Phi(\rho_1), \ldots, \Phi(\rho_k))$ for $\Phi \in \mathcal{S}$.

イロト イヨト イヨト イヨト

Interpolation and Approximation Problems

Let $\mathcal S$ be a set of quantum operations from M_n to M_m . Suppose

$$\mathcal{F}_1 = \{\rho_1, \dots, \rho_k\} \subseteq M_n$$
 and $\mathcal{F}_2 = \{\sigma_1, \dots, \sigma_k\} \subseteq M_m$

are two families of density matrices.

 $\bullet\,$ Determine the conditions for the existence of $\Phi\in \mathcal{S}$ such that

$$\Phi(\rho_j) = \sigma_j$$
 for all $j = 1, \dots, k$.

 If such a quantum operation does not exist, what are the maximum or minimum "distance" measure between

 $(\sigma_1,\ldots,\sigma_k)$ and $(\Phi(\rho_1),\ldots,\Phi(\rho_k))$ for $\Phi\in\mathcal{S}$.

Example Suppose $\mathcal{F}_1, \mathcal{F}_2 \subseteq M_2$. Then ...

Some Known Results

• (Chefles, Jozsa, Winter, 2004) $\mathcal{F}_1, \mathcal{F}_2$ are families of pure states

$$\rho_i = x_i x_i^*$$
 and $\sigma_i = y_i y_i^*$ for $i = 1, \dots, k$.

Construct a $k \times k$ correlation matrices C such that $C \circ (y_i^* y_j) = (x_i^* x_j)$.

イロト イヨト イヨト イヨト

Some Known Results

• (Chefles, Jozsa, Winter, 2004) $\mathcal{F}_1, \mathcal{F}_2$ are families of pure states

$$\rho_i = x_i x_i^*$$
 and $\sigma_i = y_i y_i^*$ for $i = 1, \dots, k$.

Construct a $k \times k$ correlation matrices C such that $C \circ (y_i^* y_j) = (x_i^* x_j)$.

• (Li and Poon, 2011) $\mathcal{F}_1, \mathcal{F}_2$ are commuting families. Suppose

$$\rho_i = \begin{pmatrix} a_{i1} & & \\ & \ddots & \\ & & a_{in} \end{pmatrix} \text{ and } \sigma_i = \begin{pmatrix} b_{i1} & & \\ & \ddots & \\ & & b_{im} \end{pmatrix} \text{ for } i = 1, \dots, k.$$

Construct an $n \times k$ row stochastic matrix D such that $(a_{ij})D = (b_{ij})$.

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ● 圖 ● の Q @

Some Known Results

• (Chefles, Jozsa, Winter, 2004) $\mathcal{F}_1, \mathcal{F}_2$ are families of pure states

$$\rho_i = x_i x_i^*$$
 and $\sigma_i = y_i y_i^*$ for $i = 1, \dots, k$.

Construct a $k \times k$ correlation matrices C such that $C \circ (y_i^* y_j) = (x_i^* x_j)$.

• (Li and Poon, 2011) $\mathcal{F}_1, \mathcal{F}_2$ are commuting families. Suppose

$$\rho_i = \begin{pmatrix} a_{i1} & & \\ & \ddots & \\ & & a_{in} \end{pmatrix} \text{ and } \sigma_i = \begin{pmatrix} b_{i1} & & \\ & \ddots & \\ & & b_{im} \end{pmatrix} \text{ for } i = 1, \dots, k.$$

Construct an $n \times k$ row stochastic matrix D such that $(a_{ij})D = (b_{ij})$.

 (Huang, Li, E. Poon, Sze, 2012) General families. Solve some complicated matrix equations.

イロト イヨト イヨト イヨト

Э

If k = 1, always possible.

・ロト ・回ト ・ヨト ・ヨト

E

If k = 1, always possible.

If k = 4, just check the Choi matrix $C(\Phi) = (\Phi(E_{ij}))$.

イロン スロン スロン スロン

If k = 1, always possible.

If k = 4, just check the Choi matrix $C(\Phi) = (\Phi(E_{ij}))$.

If k = 2, we may assume that ρ_1, ρ_2 are pure states, and check

$$F(\rho_1, \rho_2) = \|\sqrt{\rho_1}\sqrt{\rho_2}\| \le \|\sqrt{\sigma_1}\sqrt{\sigma_2}\|.$$
 (1)

<□> <同> <同> < 目> < 目> < 目> = - のへで

If k = 1, always possible.

If k = 4, just check the Choi matrix $C(\Phi) = (\Phi(E_{ij}))$.

If k = 2, we may assume that ρ_1, ρ_2 are pure states, and check

$$F(\rho_1, \rho_2) = \|\sqrt{\rho_1}\sqrt{\rho_2}\| \le \|\sqrt{\sigma_1}\sqrt{\sigma_2}\|.$$
 (1)

If k = 3, we may assume that $\rho_1 = x_1 x_1^*, \rho_2 = x_2 x_2^*, \rho_3 = x_3 x_3^*$ with $x_3 = \mu_1 x_1 + \mu_2 x_2$, and check (1) and

$$\sigma = \frac{1}{|\mu_1 \mu_2|} (\sigma_3 - |\mu_1|^2 \sigma_1 - |\mu|^2 \sigma_2) = \operatorname{Re}\sqrt{\sigma_1} C \sqrt{\sigma_2}$$

for a matrix C satisfying ${\rm tr}\,(CC^*)=1+|\det(C)|^2\leq 2.$

If
$$k = 1$$
, always possible.

If k = 4, just check the Choi matrix $C(\Phi) = (\Phi(E_{ij}))$.

If k = 2, we may assume that ρ_1, ρ_2 are pure states, and check

$$F(\rho_1, \rho_2) = \|\sqrt{\rho_1}\sqrt{\rho_2}\| \le \|\sqrt{\sigma_1}\sqrt{\sigma_2}\|.$$
 (1)

If k = 3, we may assume that $\rho_1 = x_1 x_1^*, \rho_2 = x_2 x_2^*, \rho_3 = x_3 x_3^*$ with $x_3 = \mu_1 x_1 + \mu_2 x_2$, and check (1) and

$$\sigma = \frac{1}{|\mu_1 \mu_2|} (\sigma_3 - |\mu_1|^2 \sigma_1 - |\mu|^2 \sigma_2) = \operatorname{Re}\sqrt{\sigma_1} C \sqrt{\sigma_2}$$

for a matrix C satisfying $\operatorname{tr}(CC^*) = 1 + |\det(C)|^2 \le 2$.

Question Can we find a more explicit (and symmetric) conditions on x_1, x_2, x_3 , and $\sigma_1, \sigma_2, \sigma_3$ for the existence of Φ ?

 (Choi, 1975) A linear operator Φ : M_n → M_m is a quantum operation if and only if the (Choi) matrix P = (Φ(E_{ij}))_{1≤i,j≤n} ∈ M_n(M_m) is positive semi-definite with tr Φ(E_{ij}) = δ_{ij}.

不得 とうぼう うまとう

- (Choi, 1975) A linear operator Φ : M_n → M_m is a quantum operation if and only if the (Choi) matrix P = (Φ(E_{ij}))_{1≤i,j≤n} ∈ M_n(M_m) is positive semi-definite with tr Φ(E_{ij}) = δ_{ij}.
- (D. Drusvyatskiy, C.K. Li, D. Pelejo, Y.L. Voronin, H. Wolkowicz, 2015) General families. Construct a Choi matrix $P = (P_{ij}) \in M_n(M_m)$ such that

$$\sum_{i,j} (\rho_\ell)_{ij} P_{ij} = \sigma_\ell$$
 for $\ell = 1, \dots, k$.

(日本) (日本) (日本)

- (Choi, 1975) A linear operator Φ : M_n → M_m is a quantum operation if and only if the (Choi) matrix P = (Φ(E_{ij}))_{1≤i,j≤n} ∈ M_n(M_m) is positive semi-definite with tr Φ(E_{ij}) = δ_{ij}.
- (D. Drusvyatskiy, C.K. Li, D. Pelejo, Y.L. Voronin, H. Wolkowicz, 2015) General families. Construct a Choi matrix $P = (P_{ij}) \in M_n(M_m)$ such that

$$\sum_{i,j} (\rho_\ell)_{ij} P_{ij} = \sigma_\ell$$
 for $\ell = 1, \dots, k$.

• One may then solve the problem by numerical methods such as positive definite programming and alternating projections, etc.

イロト イポト イヨト イヨト

- (Choi, 1975) A linear operator Φ : M_n → M_m is a quantum operation if and only if the (Choi) matrix P = (Φ(E_{ij}))_{1≤i,j≤n} ∈ M_n(M_m) is positive semi-definite with tr Φ(E_{ij}) = δ_{ij}.
- (D. Drusvyatskiy, C.K. Li, D. Pelejo, Y.L. Voronin, H. Wolkowicz, 2015) General families. Construct a Choi matrix $P = (P_{ij}) \in M_n(M_m)$ such that

$$\sum_{i,j} (\rho_\ell)_{ij} P_{ij} = \sigma_\ell$$
 for $\ell = 1, \ldots, k$.

- One may then solve the problem by numerical methods such as positive definite programming and alternating projections, etc.
- One may impose additional (linear) constraints on Φ . For instance, Φ is unital.

イロト イボト イヨト

- (Choi, 1975) A linear operator Φ : M_n → M_m is a quantum operation if and only if the (Choi) matrix P = (Φ(E_{ij}))_{1≤i,j≤n} ∈ M_n(M_m) is positive semi-definite with tr Φ(E_{ij}) = δ_{ij}.
- (D. Drusvyatskiy, C.K. Li, D. Pelejo, Y.L. Voronin, H. Wolkowicz, 2015) General families. Construct a Choi matrix $P = (P_{ij}) \in M_n(M_m)$ such that

$$\sum_{i,j} (\rho_\ell)_{ij} P_{ij} = \sigma_\ell$$
 for $\ell = 1, \ldots, k$.

- One may then solve the problem by numerical methods such as positive definite programming and alternating projections, etc.
- One may impose additional (linear) constraints on Φ . For instance, Φ is unital.

Question Can we impose the conditions such as mixed unitary?

イロト 不得 トイラト イラト・ラ

• Can we impose additional conditions on quantum channels:

イロン 不同 とうほどう ほどう

Э

- Can we impose additional conditions on quantum channels:
- General quantum channels / operations $\Phi: M_n \to M_n$ such that

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

イロト イヨト イヨト イヨト 二日

- Can we impose additional conditions on quantum channels:
- General quantum channels / operations $\Phi: M_n \to M_n$ such that

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

• Unitary channels: $\Phi(X) = UXU^*$ for some unitary U.

イロト 不得 トイラト イラト・ラ

SQ P

- Can we impose additional conditions on quantum channels:
- General quantum channels / operations $\Phi: M_n \to M_n$ such that

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

- Unitary channels: $\Phi(X) = UXU^*$ for some unitary U.
- Mixed unitary channels: $\Phi(X) = \sum_{j=1}^{r} p_j U_j X U_j^*$ for some unitary U_1, \ldots, U_r and probability vector (p_1, \ldots, p_r) .

- Can we impose additional conditions on quantum channels:
- General quantum channels / operations $\Phi: M_n \to M_n$ such that

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

- Unitary channels: $\Phi(X) = UXU^*$ for some unitary U.
- Mixed unitary channels: $\Phi(X) = \sum_{j=1}^{r} p_j U_j X U_j^*$ for some unitary U_1, \ldots, U_r and probability vector (p_1, \ldots, p_r) .
- Unital channels: quantum channels Φ such that $\Phi(I/n) = I/n$.

- Can we impose additional conditions on quantum channels:
- General quantum channels / operations $\Phi: M_n \to M_n$ such that

$$\Phi(X) = \sum_{j=1}^{r} F_j X F_j^* \quad \text{ for all } X \in M_n,$$

where $F_1, \ldots, F_r \in M_n$ satisfy $\sum_{j=1}^r F_j^* F_j = I_n$.

- Unitary channels: $\Phi(X) = UXU^*$ for some unitary U.
- Mixed unitary channels: $\Phi(X) = \sum_{j=1}^{r} p_j U_j X U_j^*$ for some unitary U_1, \ldots, U_r and probability vector (p_1, \ldots, p_r) .
- Unital channels: quantum channels Φ such that $\Phi(I/n) = I/n$.
- Evidently,

{Unitary operations} \subseteq {Mixed unitary operations}

 \subseteq {Unital operations} \subseteq {General quantum operations}.

Question For a given $\varepsilon > 0$, determine whether there is a quantum operation Φ such that $\|\Phi(\rho_j) - \sigma_j\| < \varepsilon$ for all $j = 1, \ldots, k$.

• For two density matrices / quantum states ρ, σ , we can measure the distance between them by a norm function: $\|\rho - \sigma\|$.

イロト イヨト イヨト 一日

SQ P

Question For a given $\varepsilon > 0$, determine whether there is a quantum operation Φ such that $\|\Phi(\rho_j) - \sigma_j\| < \varepsilon$ for all $j = 1, \ldots, k$.

- For two density matrices / quantum states ρ, σ , we can measure the distance between them by a norm function: $\|\rho \sigma\|$.
- Instead of considering a special norm, we obtain results for general unitary similarity invariant (USI) norms.

イロト 不得下 イヨト イヨト 二日

na a

Question For a given $\varepsilon > 0$, determine whether there is a quantum operation Φ such that $\|\Phi(\rho_j) - \sigma_j\| < \varepsilon$ for all $j = 1, \ldots, k$.

- For two density matrices / quantum states ρ, σ , we can measure the distance between them by a norm function: $\|\rho \sigma\|$.
- Instead of considering a special norm, we obtain results for general unitary similarity invariant (USI) norms.

That is, $||UXU^*|| = ||X||$ for any $U, X \in M_n$ such that U is unitary.

Question For a given $\varepsilon > 0$, determine whether there is a quantum operation Φ such that $\|\Phi(\rho_j) - \sigma_j\| < \varepsilon$ for all $j = 1, \ldots, k$.

- For two density matrices / quantum states ρ, σ , we can measure the distance between them by a norm function: $\|\rho \sigma\|$.
- Instead of considering a special norm, we obtain results for general unitary similarity invariant (USI) norms.

That is, $||UXU^*|| = ||X||$ for any $U, X \in M_n$ such that U is unitary.

• Special cases include:

Question For a given $\varepsilon > 0$, determine whether there is a quantum operation Φ such that $\|\Phi(\rho_j) - \sigma_j\| < \varepsilon$ for all $j = 1, \ldots, k$.

- For two density matrices / quantum states ρ, σ , we can measure the distance between them by a norm function: $\|\rho \sigma\|$.
- Instead of considering a special norm, we obtain results for general unitary similarity invariant (USI) norms.

That is, $||UXU^*|| = ||X||$ for any $U, X \in M_n$ such that U is unitary.

• Special cases include:

the operator norm $||X||_{sp} = \max\{||Xv|| : v \in \mathbb{C}^n, ||v|| = 1\},\$

Question For a given $\varepsilon > 0$, determine whether there is a quantum operation Φ such that $\|\Phi(\rho_j) - \sigma_j\| < \varepsilon$ for all $j = 1, \ldots, k$.

- For two density matrices / quantum states ρ, σ , we can measure the distance between them by a norm function: $\|\rho \sigma\|$.
- Instead of considering a special norm, we obtain results for general unitary similarity invariant (USI) norms.

That is, $||UXU^*|| = ||X||$ for any $U, X \in M_n$ such that U is unitary.

• Special cases include:

the operator norm $\|X\|_{sp} = \max\{\|Xv\| : v \in \mathbb{C}^n, \|v\| = 1\},\$ the trace norm $\|X\|_{tr} = tr |X|$, and

Approximation problems

Question For a given $\varepsilon > 0$, determine whether there is a quantum operation Φ such that $\|\Phi(\rho_j) - \sigma_j\| < \varepsilon$ for all $j = 1, \ldots, k$.

- For two density matrices / quantum states ρ, σ , we can measure the distance between them by a norm function: $\|\rho \sigma\|$.
- Instead of considering a special norm, we obtain results for general unitary similarity invariant (USI) norms.

That is, $||UXU^*|| = ||X||$ for any $U, X \in M_n$ such that U is unitary.

• Special cases include:

the operator norm $||X||_{sp} = \max\{||Xv|| : v \in \mathbb{C}^n, ||v|| = 1\},\$ the trace norm $||X||_{tr} = tr |X|$, and the Frobenius norm $||X||_{Fr} = (tr (X^*X))^{1/2}.$

• There are results on the upper bound and lower bounds for $d(\Phi(\rho_1), \sigma_1)$ for $\Phi \in S$, where

 $\ensuremath{\mathcal{S}}$ is the set of all unitary, mixed unitary, unital, or general channels, and

 $d(\alpha,\beta)$ are different measures such as

 $\|\alpha - \beta\|$ for a unitary similarity invariant norm $\|\cdot\|$,

the Fedility function $d(\alpha, \beta) = F(\alpha, \beta)$,

the relative entropy function $d(\alpha, \beta) = S(\alpha || \beta)$.

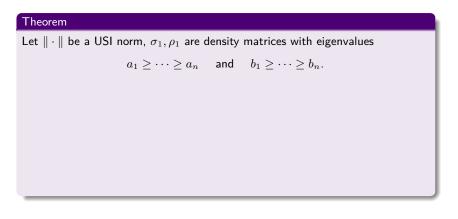
• We first describe results on $\mathcal{F}_1 = \{A\}$ and $\mathcal{F}_2 = \{B\}$.

Based on known bounds on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

イロト イヨト イヨト イヨト

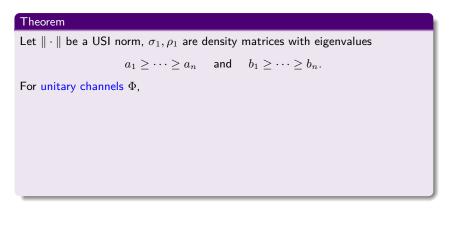
Da C

Based on known bounds on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Based on known bounds on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.



Based on known bounds on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

Theorem Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$. For unitary channels Φ , • min $\|\sigma_1 - \Phi(\rho_1)\|$ occurs if and only if there is a unitary U such that $U\sigma_1 U^* = \operatorname{diag}(a_1, \ldots, a_n)$ and $U\Phi(\rho_1)U^* = \operatorname{diag}(b_1, \ldots, b_n);$

Based on known bounds on $||A - UBU^*||$ for given Hermitian matrices $A, B \in M_n$ and unitary $U \in M_n$, we have the following.

Theorem

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unitary channels Φ ,

• $\min \|\sigma_1 - \Phi(\rho_1)\|$ occurs if and only if there is a unitary U such that

 $U\sigma_1 U^* = \operatorname{diag}(a_1, \ldots, a_n)$ and $U\Phi(\rho_1) U^* = \operatorname{diag}(b_1, \ldots, b_n);$

• $\max \|\sigma_1 - \Phi(\rho_1)\|$ occurs if and only if there is a unitary U such that

 $U\sigma_1 U^* = \operatorname{diag}(a_1, \ldots, a_n)$ and $U\Phi(\rho_1) U^* = \operatorname{diag}(b_n, \ldots, b_1);$

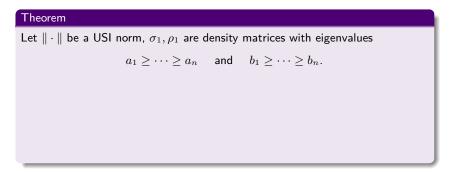
Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

イロト イヨト イヨト イヨト

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

Theorem

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

For general quantum channels Φ ,

イロト イポト イヨト イヨト

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

Theorem

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

For general quantum channels Φ ,

•
$$\min \|\sigma_1 - \Phi(\rho_1)\|$$
 occurs if and only if $\Phi(\rho_1) = \sigma_1$;

イロト イポト イヨト イヨト

Fact Let $\rho,\sigma\in M_n$ be density matrices. There is always a quantum channel Φ such that

$$\Phi(\rho) = \sigma.$$

Theorem

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues

$$a_1 \geq \cdots \geq a_n$$
 and $b_1 \geq \cdots \geq b_n$.

For general quantum channels Φ ,

- $\min \|\sigma_1 \Phi(\rho_1)\|$ occurs if and only if $\Phi(\rho_1) = \sigma_1$;
- $\max \|\sigma_1 \Phi(\rho_1)\|$ occurs if and only if there is a unitary U such that

$$U\sigma_1 U^* = \text{diag}(a_1, \dots, a_n)$$
 and $U\Phi(\rho_1) U^* = \text{diag}(0, \dots, 0, 1).$

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science

イロト スピト メヨト メヨト

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

1 There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.

イロン 不同 とうほどう ほどう

= nar

Let $\rho,\sigma\in M_n$ be density matrices. The following are equivalent.

- **1** There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.
- 2 There are unitary matrices $U_1, \ldots, U_n \in M_n$ such that

$$\sigma = \frac{1}{n} \left(U_1 \rho U_1^* + \dots + U_n \rho U_n^* \right).$$

イロト イポト イヨト イヨト

Э

Let $\rho, \sigma \in M_n$ be density matrices. The following are equivalent.

- **1** There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.
- 2 There are unitary matrices $U_1, \ldots, U_n \in M_n$ such that

$$\sigma = \frac{1}{n} \left(U_1 \rho U_1^* + \dots + U_n \rho U_n^* \right).$$

3 There exists a unital quantum channel Φ such that $\Phi(\rho) = \sigma$.

イロト イポト イヨト イヨト

Let $\rho,\sigma\in M_n$ be density matrices. The following are equivalent.

- **1** There exists a mixed unitary quantum channel Φ such that $\Phi(\rho) = \sigma$.
- 2 There are unitary matrices $U_1, \ldots, U_n \in M_n$ such that

$$\sigma = \frac{1}{n} \left(U_1 \rho U_1^* + \dots + U_n \rho U_n^* \right).$$

- **3** There exists a unital quantum channel Φ such that $\Phi(\rho) = \sigma$.
- **3** $\lambda(\sigma) \prec \lambda(\rho)$, i.e., the sum of the k largest eigenvalues of σ is not larger than that of ρ for $k = 1, \ldots, n-1$.

イロト 不得 トイラト イラト・ラ

Let $\|\cdot\|$ be a USI norm, σ_1,ρ_1 are density matrices with eigenvalues

 $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For any unital channel Φ ,

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For any unital channel Φ ,

• max $\|\sigma_1 - \Phi(\rho_1)\|$ occurs if and only if there is a unitary U such that $U\sigma_1 U^* = \text{diag}(a_1, \dots, a_n)$ and $U\Phi(\rho_1) U^* = \text{diag}(b_n, \dots, b_1);$

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For any unital channel Φ ,

max ||σ₁ - Φ(ρ₁)|| occurs if and only if there is a unitary U such that Uσ₁U* = diag (a₁,..., a_n) and UΦ(ρ₁)U* = diag (b_n,..., b₁);
min ||σ₁ - Φ(ρ₁)|| if and only if there is a unitary U such that Uσ₁U* = diag (a₁,..., a_n) and UΦ(ρ₁)U* = diag (d₁,..., d_n), where (d₁,..., d_n) is determined by the following algorithm

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For any unital channel Φ ,

max ||σ₁ - Φ(ρ₁)|| occurs if and only if there is a unitary U such that Uσ₁U* = diag (a₁,..., a_n) and UΦ(ρ₁)U* = diag (b_n,..., b₁);
min ||σ₁ - Φ(ρ₁)|| if and only if there is a unitary U such that Uσ₁U* = diag (a₁,..., a_n) and UΦ(ρ₁)U* = diag (d₁,..., d_n), where (d₁,..., d_n) is determined by the following algorithm Step 0. Set (Δ₁,..., Δ_n) = λ(ρ₁) - λ(ρ₂).

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For any unital channel Φ ,

• $\max \|\sigma_1 - \Phi(\rho_1)\|$ occurs if and only if there is a unitary U such that $U\sigma_1 U^* = \operatorname{diag}(a_1, \ldots, a_n)$ and $U\Phi(\rho_1)U^* = \operatorname{diag}(b_n, \ldots, b_1);$ • $\min \|\sigma_1 - \Phi(\rho_1)\|$ if and only if there is a unitary U such that $U\sigma_1 U^* = \operatorname{diag}(a_1, \ldots, a_n)$ and $U\Phi(\rho_1)U^* = \operatorname{diag}(d_1, \ldots, d_n),$ where (d_1, \ldots, d_n) is determined by the following algorithm Step 0. Set $(\Delta_1, \ldots, \Delta_n) = \lambda(\rho_1) - \lambda(\rho_2).$ Step 1. If $\Delta_1 \ge \cdots \ge \Delta_n$, then set $(d_1, \ldots, d_n) = \lambda(\rho_1) - (\Delta_1, \ldots, \Delta_n)$ and stop. Else, go to Step 2.

Let $\|\cdot\|$ be a USI norm, σ_1, ρ_1 are density matrices with eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For any unital channel Φ ,

- $\max \|\sigma_1 \Phi(\rho_1)\|$ occurs if and only if there is a unitary U such that $U\sigma_1 U^* = \operatorname{diag}(a_1, \ldots, a_n)$ and $U\Phi(\rho_1)U^* = \operatorname{diag}(b_n, \ldots, b_1);$ • $\min \|\sigma_1 - \Phi(\rho_1)\|$ if and only if there is a unitary U such that $U\sigma_1 U^* = \operatorname{diag}(a_1, \ldots, a_n)$ and $U\Phi(\rho_1)U^* = \operatorname{diag}(d_1, \ldots, d_n),$ where (d_1, \ldots, d_n) is determined by the following algorithm Step 0. Set $(\Delta_1, \ldots, \Delta_n) = \lambda(\rho_1) - \lambda(\rho_2).$ Step 1. If $\Delta_1 \ge \cdots \ge \Delta_n$, then set $(d_1, \ldots, d_n) = \lambda(\rho_1) - (\Delta_1, \ldots, \Delta_n)$ and stop.
 - Step 1. If $\Delta_1 \ge \cdots \ge \Delta_n$, then set $(d_1, \ldots, d_n) = \lambda(\rho_1) (\Delta_1, \ldots, \Delta_n)$ and stop. Else, go to Step 2.

Step 2. Let $2 \leq j < k \leq \ell \leq n$ be such that

$$\Delta_{j-1} \neq \Delta_j = \dots = \Delta_{k-1} < \Delta_k = \dots = \Delta_\ell \neq \Delta_{\ell+1}.$$

Replace each $\Delta_j, \ldots, \Delta_\ell$ by $(\Delta_j + \cdots + \Delta_\ell)/(\ell - j + 1)$, and go to Step 1.

Here are two examples illustrating the algorithm in the theorem.

Example 1 Let $\sigma_1 = \frac{1}{10} \text{diag}(4,3,3,0)$ and $\rho_1 = \frac{1}{10} \text{diag}(3,3,3,1)$.

Apply Step 0:

Set $(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$

Here are two examples illustrating the algorithm in the theorem.

Example 1 Let $\sigma_1 = \frac{1}{10} \operatorname{diag}(4, 3, 3, 0)$ and $\rho_1 = \frac{1}{10} \operatorname{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set $(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) \frac{1}{10} = \operatorname{diag} (3, 3, 3, 1).$

Here are two examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma_1 = \frac{1}{10} \operatorname{diag}(4, 3, 3, 0)$$
 and $\rho_1 = \frac{1}{10} \operatorname{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) \frac{1}{10} = \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $\sigma_1 = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $\rho_1 = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (5, 2, 2, 1) = \frac{1}{10} \operatorname{diag} (-1, 1, 1, -1).$$

<□> <同> <同> < 目> < 目> < 目> = - のへで

Here are two examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma_1 = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $\rho_1 = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) \frac{1}{10} = \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $\sigma_1 = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $\rho_1 = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag}(4, 3, 3, 0) - \frac{1}{10} \operatorname{diag}(5, 2, 2, 1) = \frac{1}{10} \operatorname{diag}(-1, 1, 1, -1).$$

Apply Step 2.

Change
$$(\Delta_1, \ldots, \Delta_4)$$
 to $\frac{1}{10}$ diag $(1/3, 1/3, 1/3, -1)$.

<□> <同> <同> < 目> < 目> < 目> = - のへで

Here are two examples illustrating the algorithm in the theorem.

Example 1 Let
$$\sigma_1 = \frac{1}{10} \text{diag}(4, 3, 3, 0)$$
 and $\rho_1 = \frac{1}{10} \text{diag}(3, 3, 3, 1)$.

Apply Step 0:

Set $(\Delta_1, \dots, \Delta_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (3, 3, 3, 1) = \frac{1}{10} \operatorname{diag} (1, 0, 0, -1).$ Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1, 0, 0, -1) \frac{1}{10} = \operatorname{diag} (3, 3, 3, 1).$$

Example 2 Let $\sigma_1 = \frac{1}{10} \text{diag}(4, 3, 3, 0)$ and $\rho_1 = \frac{1}{10} \text{diag}(5, 2, 2, 1)$.

Apply Step 0:

Set
$$(\Delta_1, \ldots, \Delta_4) = \frac{1}{10} \operatorname{diag}(4, 3, 3, 0) - \frac{1}{10} \operatorname{diag}(5, 2, 2, 1) = \frac{1}{10} \operatorname{diag}(-1, 1, 1, -1).$$

Apply Step 2.

Change $(\Delta_1, \ldots, \Delta_4)$ to $\frac{1}{10}$ diag (1/3, 1/3, 1/3, -1).

Apply Step 1.

Set
$$(d_1, \ldots, d_4) = \frac{1}{10} \operatorname{diag} (4, 3, 3, 0) - \frac{1}{10} \operatorname{diag} (1/3, 1/3, 1/3, -1) = \frac{1}{30} \operatorname{diag} (11, 8, 8, 3)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

Consider the fidelity function $F(\rho_1, \rho_2) = \|\rho_1^{1/2} \rho_2^{1/2}\|_1$,

◆□ > ◆□ > ◆臣 > ◆臣 > ○

E DQC

Consider the fidelity function $F(\rho_1, \rho_2) = \|\rho_1^{1/2} \rho_2^{1/2}\|_1$,

Theorem [Zhang, Fei, 2014]

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のくで

Consider the fidelity function $F(\rho_1, \rho_2) = \|\rho_1^{1/2} \rho_2^{1/2}\|_1$,

Theorem [Zhang, Fei, 2014]

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unitary channels Φ ,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ クタペ

Consider the fidelity function $F(\rho_1, \rho_2) = \|\rho_1^{1/2} \rho_2^{1/2}\|_1$,

Theorem [Zhang, Fei, 2014]

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unitary channels Φ ,

• $\max F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \text{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = (b_1, \dots, b_n);$$

Consider the fidelity function $F(\rho_1, \rho_2) = \|\rho_1^{1/2} \rho_2^{1/2}\|_1$,

Theorem [Zhang, Fei, 2014]

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unitary channels Φ ,

• $\max F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \text{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = (b_1, \dots, b_n);$$

• min $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that $U\rho_1 U^* = \text{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2)U^* = (b_n, \dots, b_1).$

Consider the fidelity function $F(\rho_1, \rho_2) = \|\rho_1^{1/2} \rho_2^{1/2}\|_1$,

Theorem [Zhang, Fei, 2014]

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unitary channels Φ ,

• $\max F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \text{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = (b_1, \dots, b_n);$$

• min $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that $U\rho_1 U^* = \text{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2)U^* = (b_n, \dots, b_1).$

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above minimum condition also holds for unital channels / mixed unitary channel,

Consider the fidelity function $F(\rho_1, \rho_2) = \|\rho_1^{1/2} \rho_2^{1/2}\|_1$,

Theorem [Zhang, Fei, 2014]

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unitary channels Φ ,

• $\max F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

 $U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = (b_1, \dots, b_n);$

• min $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that $U\rho_1 U^* = \text{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2)U^* = (b_n, \dots, b_1).$

In [J Li, Pereira, Plosker, 2015], the authors pointed out that the above minimum condition also holds for unital channels / mixed unitary channel,

and finding the maximum seems difficult.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ クタペ

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ ,

イロト イヨト イヨト イヨト

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

イロト イヨト イヨト イヨト 二日

Da C

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \geq \cdots \geq a_n$ and $b_1 \geq \cdots \geq b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

 $U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$

where d_1, \ldots, d_n are determined as follows.

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

 $U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \dots, a_r), \quad b = (b_1, \dots, b_r), \quad (d_{r+1}, \dots, d_n) = (b_{r+1}, \dots, b_n).$

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

 $U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

Go to Step 1.

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \dots, a_r), \quad b = (b_1, \dots, b_r), \quad (d_{r+1}, \dots, d_n) = (b_{r+1}, \dots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \ldots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \dots, a_r), \quad b = (b_1, \dots, b_r), \quad (d_{r+1}, \dots, d_n) = (b_{r+1}, \dots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \ldots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

Set

$$(d_1, \ldots, d_k) = \frac{a_1 + \cdots + a_k}{b_1 + \cdots + b_k} (a_1, \ldots, a_k).$$

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \dots, a_r), \quad b = (b_1, \dots, b_r), \quad (d_{r+1}, \dots, d_n) = (b_{r+1}, \dots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \ldots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

Set

$$(d_1, \ldots, d_k) = \frac{a_1 + \cdots + a_k}{b_1 + \cdots + b_k} (a_1, \ldots, a_k).$$

If k = r, then exit. Else, replace r, a, b by $r - k, (a_{k+1}, \ldots, a_r), (b_{k+1}, \ldots, b_r)$ and go to Step 1.

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \ldots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

Set

$$(d_1, \ldots, d_k) = \frac{a_1 + \cdots + a_k}{b_1 + \cdots + b_k} (a_1, \ldots, a_k).$$

If k = r, then exit. Else, replace r, a, b by $r - k, (a_{k+1}, \ldots, a_r), (b_{k+1}, \ldots, b_r)$ and go to Step 1.

Examples If $(a_1, \ldots, a_n) \prec (b_1, \ldots, b_n)$, then $(d_1, \ldots, d_n) = (a_1, \ldots, a_n)$.

Suppose ρ_1, ρ_2 have eigenvalues $a_1 \ge \cdots \ge a_n$ and $b_1 \ge \cdots \ge b_n$.

For unital channels, mixed unitary channels, or average unitary channels Φ , max $F(\rho_1, \Phi(\rho_2))$ occurs if and only if there is a unitary U such that

$$U\rho_1 U^* = \operatorname{diag}(a_1, \dots, a_n), \qquad U\Phi(\rho_2) U^* = \operatorname{diag}(d_1, \dots, d_n),$$

where d_1, \ldots, d_n are determined as follows. Step 0. Suppose $a_1 \ge \cdots \ge a_r \ge 0 = a_{r+1} = \cdots = a_n$. Let

 $a = (a_1, \ldots, a_r), \quad b = (b_1, \ldots, b_r), \quad (d_{r+1}, \ldots, d_n) = (b_{r+1}, \ldots, b_n).$

Go to Step 1.

Step 1. Let $k \in \{1, \ldots, r\}$ be the largest positive integer such that

$$\frac{1}{a_1+\cdots+a_k}(a_1,\ldots,a_k)\prec \frac{1}{b_1+\cdots+b_k}(b_1,\ldots,b_k).$$

Set

$$(d_1, \ldots, d_k) = \frac{a_1 + \cdots + a_k}{b_1 + \cdots + b_k} (a_1, \ldots, a_k).$$

If k = r, then exit. Else, replace r, a, b by $r - k, (a_{k+1}, \ldots, a_r), (b_{k+1}, \ldots, b_r)$ and go to Step 1.

Examples If $(a_1, ..., a_n) \prec (b_1, ..., b_n)$, then $(d_1, ..., d_n) = (a_1, ..., a_n)$. If $(b_1, ..., b_n) = (1/n, ..., 1/n)$, then $(d_1, ..., d_n) = (1/n, ..., 1/n)$.

Chi-Kwong Li, College of William & Mary

Some Optimization Problems in Quantum Information Science

• We also obtained results for general quantum channels, and other functions on two density matrices such as the relative entropy:

$$S(\rho_1 || \rho_2) = \operatorname{tr} \rho_1(\log_2 \rho_1 - \log_2 \rho_2).$$

<回ト < 三ト < 三ト

• We also obtained results for general quantum channels, and other functions on two density matrices such as the relative entropy:

$$S(\rho_1 || \rho_2) = \operatorname{tr} \rho_1(\log_2 \rho_1 - \log_2 \rho_2).$$

• There are many open problems.

・ 同下 ・ ヨト ・ ヨト

• We also obtained results for general quantum channels, and other functions on two density matrices such as the relative entropy:

$$S(\rho_1 || \rho_2) = \operatorname{tr} \rho_1(\log_2 \rho_1 - \log_2 \rho_2).$$

- There are many open problems.
- For example, one may study the optimal lower and upper bounds of the set

$$\{D(\rho_1, \Phi(\sigma)) : \Phi \in \mathcal{S}, \sigma \in \mathcal{T}\}$$

for a set ${\mathcal S}$ of quantum channels, and a set ${\mathcal T}$ of quantum states.

イロト イポト イヨト イヨト

nan

• We also obtained results for general quantum channels, and other functions on two density matrices such as the relative entropy:

$$S(\rho_1 || \rho_2) = \operatorname{tr} \rho_1(\log_2 \rho_1 - \log_2 \rho_2).$$

- There are many open problems.
- For example, one may study the optimal lower and upper bounds of the set

$$\{D(\rho_1, \Phi(\sigma)) : \Phi \in \mathcal{S}, \sigma \in \mathcal{T}\}$$

for a set ${\mathcal S}$ of quantum channels, and a set ${\mathcal T}$ of quantum states.

• Minimize/maximize $d((\Phi(\rho_1), \ldots, \Phi(\rho_k)), (\sigma_1, \ldots, \sigma_k))$ for other distance measure d?

イロト イボト イヨト

• We also obtained results for general quantum channels, and other functions on two density matrices such as the relative entropy:

$$S(\rho_1 || \rho_2) = \operatorname{tr} \rho_1(\log_2 \rho_1 - \log_2 \rho_2).$$

- There are many open problems.
- For example, one may study the optimal lower and upper bounds of the set

$$\{D(\rho_1, \Phi(\sigma)) : \Phi \in \mathcal{S}, \sigma \in \mathcal{T}\}$$

for a set ${\mathcal S}$ of quantum channels, and a set ${\mathcal T}$ of quantum states.

- Minimize/maximize $d((\Phi(\rho_1), \ldots, \Phi(\rho_k)), (\sigma_1, \ldots, \sigma_k))$ for other distance measure d?
- one may start with the study of $\|\Phi(\rho_1 + i\rho_2) (\sigma_1 + i\sigma_2)\|$ for the a special norm.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● 臣 ■ ● の Q @

Thank you for your attention!

Chi-Kwong Li, College of William & Mary Some Optimization Problems in Quantum Information Science

イロト イヨト イヨト イヨト

Э