Several questions about tensors

Fuzhen Zhang

Nova Southeastern University, Fort Lauderdale, Florida, USA
zhang@nova.edu

Presentation at AORC, Sungkyunkwan University, South Korea May 2017

Tensor algebra

Tensor analysis
\vdots

A Tensor is an element of a tensor space just like
a vector is an element of a vector space.
A vector in an n-dimensional space is represented by a one-dimensional array of length n with respect to a given basis:

$$
v=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{n} \longrightarrow\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

A tensor with respect to a basis is represented by a multi-dimensional array. For example, a linear transformation is represented in a basis as a two-dimensional square $n \times n$ array:

$$
\left(a_{i j}\right)
$$

$$
A=\left(a_{i j k}\right)
$$

Like a vector in a vector space, a tensor is an element in a tensor space. In multilinear algebra, we begin with the Cartesian space

$$
\begin{array}{lcccccc}
\text { Spaces : } & V_{1} & \times & V_{2} & \times & \cdots & \times \\
\text { Dim : } & n_{1} & n_{2} & \cdots & V_{m} & \mapsto & n_{m} \\
\text { Bases : } & \left\{e_{1 i_{1}}\right\} & \left\{e_{2 i_{2}}\right\} & \cdots & \left\{e_{m i_{m}}\right\} \\
\qquad v=\left(\sum_{i_{1}=1}^{n_{1}} x_{1 i_{1}} e_{1 i_{1}}, \sum_{i_{2}=1}^{n_{2}} x_{2 i_{2}} e_{2 i_{2}}, \ldots, \sum_{i_{m}=1}^{n_{m}} x_{m i_{m}} e_{m i_{m}}\right) \\
f(v)=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{m}=1}^{n_{m}} x_{1 i_{1}} x_{2 i_{2}} \cdots x_{m i_{m}} f\left(e_{1 i_{1}}, e_{2 i_{2}}, \ldots, e_{m i_{m}}\right)
\end{array}
$$

$$
\begin{gathered}
f(v)=\sum_{i_{1}=1}^{n_{1}} \sum_{i_{2}=1}^{n_{2}} \cdots \sum_{i_{m}=1}^{n_{m}} x_{1 i_{1}} x_{2 i_{2}} \cdots x_{m i_{m}} f\left(e_{1 i_{1}}, e_{2 i_{2}}, \ldots, e_{m i_{m}}\right) \\
x_{i_{1} i_{2} \ldots i_{m}}=x_{1 i_{1}} x_{2 i_{2}} \cdots x_{m i_{m}} \in \mathbb{F} \\
w_{i_{1} i_{2} \ldots i_{m}}=f\left(e_{1 i_{1}}, e_{2 i_{2}}, \ldots, e_{m i_{m}}\right) \in W
\end{gathered}
$$

If f is a multilinear map s.t $\operatorname{dim}\langle\operatorname{Im}(f)\rangle=\prod_{t=1}^{m} n_{t}$, then f is said to be a tensor map, denoted by \otimes. The elements in $\langle\operatorname{Im}(\otimes)\rangle$ are called tensors. The elements in $\operatorname{Im}(\otimes)$ are decomposable tensors:

$$
\begin{gathered}
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{m} \in W=V_{1} \otimes V_{2} \otimes \cdots \otimes V_{m} \\
\left(x_{i_{1} i_{2} \ldots i_{m}}\right), \quad 1 \leq i_{t} \leq n_{t}, \quad t=1,2, \ldots, m \\
f(v)=\sum x_{i_{1} i_{2} \ldots i_{m}} e_{1 i_{1}} \otimes e_{2 i_{2}} \otimes \cdots \otimes e_{m i_{m}}
\end{gathered}
$$

Universal Factorization Property

In algebra, consider the Cartesian product $V_{1} \times V_{2} \times \cdots \times V_{m}$ as a set. Every set freely generates an R-module \mathcal{F}. Embed

$$
V_{1} \times V_{2} \times \cdots \times V_{m} \hookrightarrow \mathcal{F}
$$

Let
$N=\left\langle\left\{\left(v_{1}, \ldots, \alpha v_{k}+\beta v_{k}^{\prime}, \ldots\right)-\alpha\left(v_{1}, \ldots, v_{k}, \ldots\right)-\beta\left(v_{1}, \ldots, v_{k}^{\prime}, \ldots\right)\right\}\right\rangle$
The quotient space is called the tensor product space of the V_{i} 's:

$$
\mathcal{F} / N=V_{1} \otimes \cdots \otimes V_{m}
$$

Quadratic form and tensor

Quadratic form

$$
f(x)=x^{t} A x=\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right), A=\left(a_{i j}\right)$ is a symmetric matrix. An n-dimensional homogeneous polynomial form of degree $m, f(x)$, is equivalent to the tensor product of a supersymmetric n-dimensional tensor A of order m, and the rank-one tensor x^{m} :

$$
f(x)=A x^{m}:=\sum_{i_{1}, \ldots, i_{m}=1}^{n} a_{i_{1}, \ldots, i_{m}} x_{i_{1}} \cdots x_{i_{m}}
$$

$$
\begin{gathered}
\mathcal{A}:\left\langle n_{1}\right\rangle \times\left\langle n_{2}\right\rangle \times \cdots \times\left\langle n_{m}\right\rangle \mapsto \mathbb{F} \\
\mathcal{A}\left(i_{1}, i_{2}, \cdots i_{m}\right)=a_{i_{1} i_{2} \cdots i_{m}} \\
\left(a_{0}\right), \quad\left(a_{i}\right), \quad\left(a_{i j}\right), \quad\left(a_{i j k}\right), \quad \cdots
\end{gathered}
$$

$$
\left(a_{i_{1} i_{2} \cdots i_{m}}\right)
$$

- Hypermatrix: Lim, Handbook of Linear Alg., 2nd ed., 2014
- Tensor: Cui, Li, Ng, SIAM. J. Matrix Anal. Appl., 2014
- K.C. Chang on nonnegative tensors, 2013
- L.Q. Qi research on tensors since 2000+
- Semi-magic cube: Ahmed et al, Discrete and Computational Geometry Algorithms and Combinatorics, 2003
- Stochastic cubes, Gupta and Nath, 1973
- Multidimensional matrices, Brualdi and Csima 1970s
- Higher dimensional configurations, Jurkat and Ryser 1968s

Applications of tensors

- Almost everywhere in Math and Physics
- Computer science
- Quantum computation and information
- Many more...

Ways to study: Divide stochastic cube into slices

Frontal slices

Horizontal slices

Cube to slices. In a triply stochastic cube, every slice is doubly stochastic.
We will divide a (3D) stochastic cube into (2D) stochastic matrices - slices. Uling the properties of stochastic matrices. we study the polytope of the stochastic cubes.

Courtesy of mathworks

$$
A=\left(a_{i j k}\right)
$$

$i, j=1,2, k=1,2,3:$

$$
A=\left[\begin{array}{ll|ll|ll}
a_{111} & a_{121} & \begin{array}{ll}
a_{112} & a_{122} \\
a_{211} & a_{221}
\end{array} & \begin{array}{ll}
a_{113} & a_{123} \\
a_{212} & a_{222}
\end{array} & a_{213} & a_{223}
\end{array}\right]
$$

$i, j, k=1,2,3:$

$$
A=\left[\begin{array}{l|l|l}
3 \times 3 & 3 \times 3 & 3 \times 3
\end{array}\right]
$$

Combinatorial properties of tensors

Combinatorial properties of tensors

Recall doubly stochastic matrices

Let $A=\left(a_{i j}\right)$ be an $n \times n$ nonnegative matrix: $a_{i j} \geq 0, \forall i, j$.
If for every $i=1,2, \ldots, n$ (fix a row)

$$
\sum_{j=1}^{n} a_{i j}=1 \quad \text { (row sum) }
$$

and for every $j=1,2, \ldots, n$ (fix a column)

$$
\sum_{i=1}^{n} a_{i j}=1 \quad(\text { column sum })
$$

then A is called a doubly stochastic matrix.

Birkhoff-von Neumann Polytope Theorem

- Birkhoff (1946) - von Neumann (1953): An $n \times n$ matrix is doubly stochastic if and only if it is a convex combination of some $n \times n$ permutation matrices.
- The van der Waerden conjecture (1926-1981): The permanent function defined on set of $n \times n$ doubly stochastic attains its minimum value $\frac{n!}{n^{n}}$ when all entries are equal to $\frac{1}{n}$.
- The Birkhoff polytope: Consider $n \times n$ matrices as elements in $\mathbb{R}^{n^{2}}$. The polytope of all $n \times n$ doubly stochastic matrices is generated by the permutation matrices. It has dimension $(n-1)^{2}$ with $n!$ vertices and n^{2} facets.

Polytope

A polytope is a finitely generated convex set (hull)

Polytope

Study the polytopes of higher dimension (mainly $n \times n \times n$) tensors as subsets of \mathbb{R}^{m} (resp. $m=n^{3}$)

- Shapes and relations of three polytopes
(1) 0-1 generated polytope Δ_{n}
(2) convex set of positive Per D_{n}
(3) and triply stochastic tensors Ω_{n}
- Number of vertices of triply stochastic tensors
- Line stochastic tensors vs plane stochastic tensors

Consider a multidimensional array (hypermatrix, cube, tensor) of numerical values, $n \times n \times n$, say, satisfying:

$$
\begin{aligned}
& A=\left(a_{i j k}\right), \quad a_{i j k} \geq 0 \\
& \sum_{i=1}^{n} a_{i j k}=1, \quad \forall j, k \\
& \sum_{j=1}^{n} a_{i j k}=1, \quad \forall i, k \\
& \sum_{k=1}^{n} a_{i j k}=1, \quad \forall i, j
\end{aligned}
$$

More generally, an $n_{1} \times n_{2} \times \cdots n_{m}$ tensor of order m

$$
A=\left(a_{i_{1} i_{2} \cdots i_{m}}\right), \quad 1 \leq i_{t} \leq n_{t}, \quad t=1,2, \ldots, m
$$

Warm-up question: Ranks of coefficient matrices?

By a matrix approach, find the ranks of the coefficient matrices for

$$
\sum_{i=1}^{n} x_{i j}=1, j=1,2, \ldots, n, \quad \sum_{j=1}^{n} x_{i j}=1, i=1,2, \ldots, n
$$

and

$$
\sum_{i=1}^{n} y_{i j k}=1, \quad \sum_{j=1}^{n} y_{i j k}=1, \quad \sum_{k=1}^{n} y_{i j k}=1
$$

What is a permutation tensor?

Courtesy of Xie, Jin, and Wei 2016 LAMA

Latin squares and permutation tensors

Magic square and Semi-magic Square

1	5	9
6	7	2
8	3	4

the 12 Latin squares of order three are given by

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 3 & 2 \\
3 & 2 & 1 \\
2 & 1 & 3
\end{array}\right],} \\
& {\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 3 & 2 \\
3 & 2 & 1
\end{array}\right],\left[\begin{array}{lll}
2 & 1 & 3 \\
3 & 2 & 1 \\
1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right],\left[\begin{array}{lll}
2 & 3 & 1 \\
3 & 1 & 2 \\
1 & 2 & 3
\end{array}\right],} \\
& {\left[\begin{array}{lll}
3 & 2 & 1 \\
1 & 3 & 2 \\
2 & 1 & 3
\end{array}\right],\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 1 & 3 \\
1 & 3 & 2
\end{array}\right],\left[\begin{array}{lll}
3 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right],\left[\begin{array}{lll}
3 & 1 & 2 \\
2 & 3 & 1 \\
1 & 2 & 3
\end{array}\right],}
\end{aligned}
$$

Fact:
$L_{n}=\#$ of $n \times n$ Latin square;
$P_{n}=\#$ of $n \times n \times n$ permutation tensors. Then

$$
L_{n}=P_{n}
$$

Proof. If (i, j)-entry of the Latin square is k, then let $p_{i j k}=1$. \square

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1 \\
3 & 1 & 2
\end{array}\right] \mapsto\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\left\|\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right\| \begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

How many Latin squares?

Fact (van Lint \& Wilson, p.161):

$$
\prod_{k=1}^{n}(k!)^{n / k} \geq L_{n} \geq \frac{(n!)^{2 n}}{n^{n^{2}}}
$$

Shao and Wei (1992):

$$
L_{n}=n!\sum_{A \in B_{n}}(-1)^{\sigma_{0}(A)}(\underset{n}{\operatorname{per} A})
$$

where B_{n} is the set of all 0-1 $n \times n$ matrices, $\sigma_{0}(A)$ is the number of zero entries in matrix A, and per A is the permanent of matrix A.

The $2 \times 2 \times 2$ stochastic tensors

The $2 \times 2 \times 2$ stochastic tensors

There are $120-13 \times 3 \times 3$ permutation tensors.
Question: Can every $3 \times 3 \times 3$ stochastic cube be written as a convex combination of 0-1 $3 \times 3 \times 3$ stochastic cubes

120-1 permutation tensors as vertices +54 non 0-1 vertices.

The $3 \times 3 \times 3$ case: An extreme pt with non $0-1$ entries

Not a combination of 0-1 tensors; it's an extreme point

A stochastic tensor with 0 per

Let F be

$$
\left(\begin{array}{ccccccccccc}
0 & \boxed{0.6} & 0.4 & \vdots & \boxed{1} & 0 & 0 & \vdots & 0 & 0.4 & 0.6 \\
00.6 & 0 & 0.4 & \vdots & 0 & 0.4 & \boxed{0.6} & \vdots & 0.4 & 0.6 & 0 \\
0.4 & 0.4 & \boxed{0.2} & \vdots & 0 & \boxed{0.6} & 0.4 & \vdots & 0.6 & 0 & 0.4
\end{array}\right)
$$

If $F=x_{1} P_{1}+\cdots x_{k} P_{k}$, where each P_{i} is a permutation tensor, then every P_{i} takes the form below (same 0-1 pattern as F).
There is only one such permutation cube. (Start with *).

$$
P_{i}=\left(\begin{array}{ccccccccccc}
0 & * & * & \vdots & 1 & 0 & 0 & \vdots & 0 & * & * \\
* & 0 & * & \vdots & 0 & * & * & \vdots & * & * & 0 \\
* & * & * & \vdots & 0 & * & * & \vdots & * & 0 & *
\end{array}\right) .
$$

Upper bound for the number of vertices

Krein-Milman theorem: every compact convex polytope is the convex hull of its vertices.

The Birkhoff polytope (doubly stochastic matrices) is the convex hull of the n ! permutation matrices.

How many vertices (edges, i-faces, facets, etc) does Ω_{n} have?

Existing upper/lower bounds

Let $f_{0}\left(\Omega_{n}\right)$ be the number of vertices (0 -face) of Ω_{n}.

Theorem (Ahmed 2003-Chang, Paksoy and Z. 2016, LZZ 2017)

$$
\frac{(n!)^{2 n}}{n^{n^{2}}} \leq f_{0}\left(\Omega_{n}\right) \leq\binom{ n^{3}-\left\lfloor\frac{(n-1)^{3}+1}{2}\right\rfloor}{ 3 n^{2}-3 n+1}+\binom{n^{3}-\left\lfloor\frac{(n-1)^{3}+2}{2}\right\rfloor}{ 3 n^{2}-3 n^{2}+1}
$$

The polytope Ω_{n} is an $(n-1)^{3}$-dimensional affine subspace of $\mathbb{R}^{n^{3}}$; it has exactly n^{3} facets $F_{i j k}=\left\{x \in \Omega_{n} \mid x_{i j k}=0\right\}, 1 \leq i, j, k \leq n$.

Question 0: Qs about the polytope Ω_{n}

- Over \mathbb{R} - Convex Analysis, computational geometry
(1) What are exactly the vertices of Ω_{n} ?
(2) Give better lower/upper bounds for \# of vertices of Ω_{n}.
(3) What are exactly the vertices of Ω_{n} that are not $0-1$ tensors?
(9) What are the k-faces (say, $\operatorname{dim}=1$, edges) of Ω_{n} ?
- Over \mathbb{Q} - Algebraic Combinatorics
(1) Find the structures of the vertices of Ω_{n}.
(2) Find the number of vertices of Ω_{n}.
(3) Are there vertices of Ω_{n} that are not rational?

Questions 1: How many extreme points for $4 \times 4 \times 4$?

Case	lower	actual	upper
$\mathrm{n}=2$	1	2	21318
$\mathrm{n}=3$	2.37	66	$\frac{1}{27}\binom{65}{26}$
$\mathrm{n}=4$	25.6	$f_{0}\left(\Omega_{4}\right)^{*}$	$\frac{1}{64}\binom{138}{63}$

Lower and upper bounds

* Ke, Li, and Xiao, 2016: $f_{0}\left(\Omega_{4}\right)=225,216$
* R. Sze, email Dec. 30, 2016: $f_{0}\left(\Omega_{4}\right)=37,081,728$

Question 2: Search for better bounds

Let L_{n} denote the number of $n \times n$ Latin squares.
Note that $L_{n} \geq \frac{(n!)^{2 n}}{n^{n^{2}}}$ (see, e.g., van Lint\&Wilson, p.162).
Every Latin square is interpreted as a $0-1$ permutation tensor and every $n \times n \times n 0-1$ permutation tensor is an extreme point of Ω_{n} :

$$
\frac{(n!)^{2 n}}{n^{n^{2}}} \leq L_{n} \leq f_{0}\left(\Omega_{n}\right)
$$

A big gap between L_{n} and $f_{0}\left(\Omega_{n}\right)$! Need better bounds!!

Question 3: $K_{n} \leq f_{0}\left(\Omega_{n}\right)$?

Let L_{n} denote the number of $n \times n$ Latin squares.
It is known that (see also van Lint\&Wilson's book).

$$
\frac{(n!)^{2 n}}{n^{n^{2}}} \leq L_{n} \leq \prod_{k=1}^{n}(k!)^{n / k}:=K_{n} .
$$

We would like to ask the question if $K_{n} \leq f_{0}\left(\Omega_{n}\right)$.
What is the permanent/determinant of a Latin square?

Question 4: What is the boundary of Ω_{n} ?

```
3 convex sets \Delta: 0-1
2 polytopes
    L: per>0
    \Omega: each line sum = 1
```


Question 5: When is a tensor stochastic?

$$
\begin{gathered}
A=\left(a_{i j k}\right)_{n \times n \times n} \\
A=\left(a_{i_{1} i_{2} \cdots i_{d}}\right)_{n_{1} \times n_{2} \times \cdots \times n_{d}}
\end{gathered}
$$

Line-stochastic: each sum w.r.t. one index $=1$
Plane-stochastic: each sum w.r.t. two indices $=1$
k-hyperplane stochastic: each sum w.r.t. k indices $=1$
Does there exist some sort of stochastic tensor of size $2 \times 2 \times 2 \times 2$? $0-1$ tensor of size $2 \times 2 \times 2 \times 2$?

$$
\begin{gathered}
A=\left(a_{i j}\right)_{n \times n} \\
\operatorname{det} A=\frac{1}{2} \sum_{\alpha, \beta \in S_{n}}(-1)^{\operatorname{sgn}(\alpha) \operatorname{sgn}(\beta)} \prod_{i} a_{\alpha(i) \beta(i)} \\
\operatorname{per} A=\frac{1}{2} \sum_{\alpha, \beta \in S_{n}} \prod_{i} a_{\alpha(i) \beta(i)} \\
d_{G}^{\chi} A=\frac{1}{2} \sum_{\alpha, \beta \in G} \chi(\alpha) \chi(\beta) \quad \prod_{i} a_{\alpha(i) \beta(i)} \\
\downarrow \\
A=\left(a_{i j k}\right)_{n \times n \times n}
\end{gathered}
$$

Hyperdeterminant

Cayley (1849-):

$$
\begin{gathered}
A=\left(a_{i_{1} i_{2} \cdots i_{d}}\right)_{n \times n \times \cdots \times n} \\
\operatorname{det} A=\frac{1}{n!} \sum_{\pi_{1}, \ldots, \pi_{d} \in S_{n}} \operatorname{sgn}\left(\pi_{1}\right) \ldots \operatorname{sgn}\left(\pi_{d}\right) \prod_{i=1}^{n} a_{\pi_{1}(i) \cdots \pi_{d}(i)}
\end{gathered}
$$

$\operatorname{det}(A)=0$ if d is odd $\ldots \ldots$
Gelfand et al (1992)
L.-H. Lim (Chapter 15 in Handbook of Lin. Alg., CRC, 2013)

Cayley (1849-):

$$
\begin{gathered}
A=\left(a_{i_{1} i_{2} \cdots i_{d}}\right)_{n \times n \times \cdots \times n} \\
\operatorname{per} A=\frac{1}{n!} \sum_{\pi_{1}, \ldots, \pi_{d} \in S_{n}} \prod_{i=1}^{n} a_{\pi_{1}(i) \cdots \pi_{d}(i)} \\
\operatorname{per} A=\sum_{\pi_{2}, \ldots, \pi_{d} \in S_{n}} \prod_{i=1}^{n} a_{i \pi_{2}(i) \cdots \pi_{d}(i)}
\end{gathered}
$$

$A=\left(a_{i j k}\right)_{n \times n \times n}$

$$
A=\left(a_{i j \cdots k}\right)_{n_{1} \times n_{2} \times \cdots \times n_{d}}
$$

Question 6: Find bounds of the permanent of a 0-1 tensor

Let A be a 0-1 tensor. Then

$$
? \leq \operatorname{per} A \leq ?
$$

(1) M. Ahmed, J. De Loera, and R. Hemmecke, Polyhedral Cones of Magic Cubes and Squares, in Disc. Comput. Geo. Algo. Comb., Vol. 25, pp. 25-41 (eds B. Aronov et al), 2003, Springer.
(2) H. Chang, V.E. Paksoy, and F. Zhang, Polytopes of Stochastic Tensors, Ann. Funct. Analysis, Vol. 7, No. 3 (2016), 386-393.
3 L.-B. Cui, W. Li, and M.K. Ng, Birkhoff-von Neumann Theorem for Multistochastic Tensors, SIMAX. 35 (2014) 956-973.
(4) Z. Li, F. Zhang and X.-D. Zhang, On the number of vertices of the stochastic tensor polytope, LAMA online, 2017.
(3) R. Ke, W. Li and M. Xiao, Characterization of Extreme Points of Multi-Stochastic Tensors, Comput. Methods Appl. Math. 2016.
(0) G.M. Ziegler, Lectures on Polytopes, Springer, 1995.

