Stieltjes moment sequences of polynomials

Jeff Remmel
Department of Mathematics
University of California

Joint work with Huyile Liang and Sai-nan Zheng of Dalian
University of Technology

른UCSD

Stieltjes moment sequences

A sequence $\left(a_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence if it has the form

$$
a_{n}=\int_{0}^{\infty} x^{n} d \mu(x)
$$

where μ is a nonnegative measure on $[0, \infty)$.

Other Characterizations

(I) A sequence $\left(a_{n}\right)_{n \geq 0}$ is a Stieltjes moment sequence if and only if the determinants of the matrices $\left[a_{i+j}\right]_{0 \leq i, j \leq n}$ and $\left[a_{i+j+1}\right]_{0 \leq i, j \leq n}$ are positive for all $n \geq 0$

Total Positivity

Let $A=\left[a_{n, k}\right]_{n, k \geq 0}$ be a finite or infinite matrix.
We say that A is totally positive of order r if all its minors of order $1,2, \ldots, r$ are nonnegative.

We say that A is totally positive if it is totally positive of order r for all $r \geq 1$

A third characterization

Given a sequence $\alpha=\left(a_{n}\right)_{n \geq 0}$, we define the Hankel matrix of α, $H(\alpha)$, by

$$
H(\alpha)=\left[a_{i+j}\right]_{i, j \geq 0}=\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & a_{3} & \cdots \\
a_{1} & a_{2} & a_{3} & a_{4} & \cdots \\
a_{2} & a_{3} & a_{4} & a_{5} & \cdots \\
a_{3} & a_{4} & a_{5} & a_{6} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

Then α is a Stieltjes moment sequence if and only if $H(\alpha)$ is TP.

Let \mathbb{R} denote the real numbers and $\mathbf{x}=x_{1}, \ldots, x_{n}$.
For any polynomial $f(\mathbf{x})=\sum c_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}$ in $\mathbb{R}[\mathbf{x}]$, we let $\left.f(\mathbf{x})\right|_{x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}}=c_{i_{1}, \ldots, i_{n}}$ denote the coefficient of $x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}$ in $f(\mathrm{x})$.

We say that $f(\mathbf{x})$ is \mathbf{x}-nonnegative, written $f(\mathbf{x}) \geq_{\mathbf{x}} 0$, if

$$
\left.f(\mathbf{x})\right|_{x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{n}^{i_{n}}} \geq 0 \text { for all } i_{1}, \ldots, i_{n} .
$$

Let $M=\left[m_{n, k}(\mathbf{x})\right]_{n, k \geq 0}$ be a finite or infinite matrix of polynomials in $\mathbb{R}[\mathbf{x}]$.

We say that M is x-totally positive of order $r\left(\mathbf{x}-T P_{r}\right)$ if all its minors of order $1,2, \ldots, r$ are polynomials in \mathbf{x} with nonnegative coefficients.

We say M is \mathbf{x}-totally positive ($\mathbf{x}-T P$) if it is \mathbf{x}-totally positive of order r for all $r \geq 1$.

Given a sequence $\alpha=\left(a_{k}(\mathbf{x})\right)_{k \geq 0}$ of polynomials in $\mathbb{R}[\mathbf{x}]$, we define the Hankel matrix of $\alpha, H(\alpha, \mathbf{x})$, by

$$
H(\alpha, \mathbf{x})=\left[a_{i+j}(\mathbf{x})\right]_{i, j \geq 0}=\left[\begin{array}{ccccc}
a_{0}(\mathbf{x}) & a_{1}(\mathbf{x}) & a_{2}(\mathbf{x}) & a_{3}(\mathbf{x}) & \cdots \\
a_{1}(\mathbf{x}) & a_{2}(\mathbf{x}) & a_{3}(\mathbf{x}) & a_{4}(\mathbf{x}) & \cdots \\
a_{2}(\mathbf{x}) & a_{3}(\mathbf{x}) & a_{4}(\mathbf{x}) & a_{5}(\mathbf{x}) & \cdots \\
a_{3}(\mathbf{x}) & a_{4}(\mathbf{x}) & a_{5}(\mathbf{x}) & a_{6}(\mathbf{x}) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

Then we say that α is a Stieltjes moment sequence of polynomials if and only if $H(\alpha, \mathbf{x})$ is $\mathbf{x}-T P$.

In the case where $n=1$ so that we are considering polynomials in a single variable, our definition coincides with the definition of Stieltjes moment sequences of polynomials as defined by Wang and Zhu (2016)

Catalan Type numbers (Aigner 1999)

Let $\sigma=\left(s_{k}\right)_{k \geq 0}$ and $\tau=\left(t_{k+1}\right)_{k \geq 0}$ be two sequences of nonnegative numbers. Then define an infinite lower triangular matrix $A:=A^{\sigma, \tau}=\left[a_{n, k}\right]_{n, k \geq 0}$ where the $a_{n, k}$ are defined by the recursions

$$
\begin{equation*}
a_{n+1, k}=a_{n, k-1}+s_{k} a_{n, k}+t_{k+1} a_{n, k+1} \tag{1}
\end{equation*}
$$

subject to the initial conditions that $a_{0,0}=1$ and $a_{n, k}=0$ unless $n \geq k \geq 0$.

Aigner called $A^{\sigma, \tau}$ the recursive matrix corresponding to (σ, τ) and he called the sequence $\left(a_{n, 0}\right)_{n \geq 0}$, the Catalan-like numbers corresponding to (σ, τ).

Recently, Liang Mu, and Wang (2016) showed that many Catalan-like numbers are Stieltjes moment sequences by proving that the Hankel matrix of the sequence $\left(a_{n, 0}\right)_{n \geq 0}$ is totally positive. Such examples include the Catalan numbers, the Bell numbers, the central Delannoy numbers, the restricted hexagonal numbers, the central binomial coefficients, and the large Schröder numbers.

q-Aigner Sequences (Zhu 2013)

Suppose that we are give three sequence of polynomials over \mathbb{R} with non-negative coefficients

$$
\pi=\left(r_{k}(q)\right)_{k \geq 1}, \sigma=\left(s_{k}(q)\right)_{k \geq 0}, \text { and } \tau=\left(t_{k+1}(q)\right)_{k \geq 0}
$$

Then we define a lower triangular matrix of polynomials

$$
M(q):=M^{\pi, \sigma, \tau}(q)=\left[m_{n, k}(q)\right]_{0 \leq k \leq n}
$$

where the $m_{n, k}(q)$ are defined by the recursions

$$
\begin{equation*}
m_{n+1, k}(q)=r_{k}(q) m_{n, k-1}(q)+s_{k}(q) m_{n, k}(q)+t_{k+1}(q) m_{n, k+1}(q) \tag{2}
\end{equation*}
$$

subject to the initial conditions that $m_{0,0}(q)=1$ and $m_{n, k}(q)=0$

Liu and Wang (2007) defined a sequence of polynomials $\left(f_{n}(q)\right)_{n \geq 0}$ over \mathbb{R} to be q-log convex $(q-L C X)$ if for all $n \geq 1$,

$$
\begin{equation*}
\left(f_{n}(q)\right)^{2} \geq_{q} f_{n-1}(q) f_{n+1}(q) \tag{3}
\end{equation*}
$$

and defined a sequence of polynomials $\left(f_{n}(q)\right)_{n \geq 0}$ to be strongly q-log convex $(q-S L C X)$ if for all $n \geq m \geq 1$,

$$
\begin{equation*}
f_{n}(q) f_{m}(q) \geq_{q} f_{n-1}(q) f_{m+1}(q) \tag{4}
\end{equation*}
$$

Theorem 0.1. Zhu (2013) A sequence of polynomials $\left(m_{n, 0}(q)\right)_{n \geq 0}$ is a $q-S L C X$ sequence of polynomials if for all $k \geq 0$, $s_{k}(q) s_{k+1}(q)-t_{k+1}(q) r_{k+1}(q) \geq_{q} 0$.

Suppose that a and b are nonnegative real numbers and $r_{k}(q)=1$ for $k \geq 1, s_{0}(q)=q^{2}$ and $s_{k}(q)=1+q^{2}+a * q^{b}$ for $k \geq 1$, and $t_{1}(q)=q^{4}$ and $t_{k}(q)=q^{2}+q^{4}$ for $k \geq 2$.

It is easy to check that for all $k \geq 0$,
$s_{k}(q) s_{k+1}(q)-t_{k+1}(q) r_{k+1}(q) \geq_{q} 0$. First one can compute that

$$
\begin{aligned}
m_{0,0}(q)= & 1, \\
m_{1,0}(q)= & q^{2}, \\
m_{2,0}(q)= & q^{4}+4 q^{6}+a q^{4+b}, \\
m_{3,0}(q)= & q^{4}+5 q^{6}+9 q^{8}+2 a q^{4+b}+4 a q^{6+b}+a^{2} q^{4+2 b}, \text { and } \\
m_{4,0}(q)= & q^{4}+8 q^{6}+20 q^{8}+21 q^{10}+3 a q^{4+b}+13 a q^{6+b}+ \\
& 15 a q^{8+b}+3 a^{2} q^{4+2 b}+5 a^{2} q^{6+2 b}+a^{3} q^{4+3 b} .
\end{aligned}
$$

Then one can compute that

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{lll}
m_{0,0}(q) & m_{1,0}(q) & m_{2,0}(q) \\
m_{1,0}(q) & m_{2,0}(q) & m_{3,0}(q) \\
m_{2,0}(q) & m_{3,0}(q) & m_{4,0}(q)
\end{array}\right]\right)= \\
& -q^{8}-4 q^{10}+6 q^{12}+36 q^{14}+27 q^{16}-64 q^{18}-3 a q^{8+b}-2 a q^{10+b}+27 a q^{12+b}+ \\
& 35 a q^{14+b}-48 a q^{16+b}-3 a^{2} q^{8+2 b}+5 a^{2} q^{10+2 b}+14 a^{2} q^{12+2 b}-12 a^{2} q^{14+2 b}- \\
& a^{3} q^{8+3 b}+3 a^{3} q^{10+3 b}-a^{3} q^{12+3 b}
\end{aligned}
$$

which is not a polynomial in q with nonnegative coefficients for all integers $a, b \geq 0$.

Wang and Zhu (2016) showed that many of the special sequences considered by Zhu are in fact Stieltjes moment sequences of polynomials over q.
(1) The Bell polynomials $B_{n}(q)=\sum_{k=0}^{n} S(n, k) q^{k}$ when $r_{k}(q)=1$, $s_{k}(q)=k+q$, and $t_{k}(q)=k q$. Here $S(n, k)$ is the Stirling number of the second kind which counts the number of set partitions of $\{1, \ldots, n\}$ into k parts.
(2) The Eulerian polynomials $A_{n}(q)=\sum_{k=0}^{n} A(n, k) q^{k}$ when $r_{k}(q)=1, s_{k}(q)=(k+1) q+k$, and $t_{k}(q)=k^{2} q$. Here $A(n, k)$ is the number of permutations of n with k descents.
(3) The q-Schröder numbers, $r_{n}(q)=\sum_{k=0}^{n} \frac{1}{k+1}\binom{2 k}{k}\binom{n+k}{n-k} q^{k}$ when
$r_{k}(q)=1, s_{0}(q)=1+q, s_{k}(q)=1+2 q$ for $k \geq 1$, and $t_{k}(q)=q(1+q)$.
(4) The q-central Delannoy numbers $D_{n}(q)=\sum_{k=0}^{n}\binom{n+k}{n-k}\binom{2 k}{k} q^{k}$ when $r_{k}(q)=1, s_{k}(q)=1+2 q, t_{1}(q)=2 q(q+1)$, and $t_{k}(q)=q(1+q)$ for $k>1$.
(5) The Narayana polynomials $N_{n}(q)=\sum_{k=1}^{n} \frac{1}{n}\binom{n}{k}\binom{n}{k-1} q^{k}$ when $r_{k}(q)=1, s_{0}(q)=q, s_{k}(q)=1+q$ for $n \geq 1$, and $t_{k}(q)=q$.
(6) The Narayana polynomials $W_{n}(q)=\sum_{k=0}^{n}\binom{n}{k}^{2} q^{k}$ of type B when $r_{k}(q)=1, s_{k}(q)=1+q, t_{1}(q)=2 q$, and $t_{k}(q)=q$ for $k>1$.

Multivariate Aigner Sequences.

Suppose that we are given three sequences of polynomials over \mathbb{R} with nonnegative coefficients

$$
\pi=\left(r_{k}(\mathbf{x})\right)_{k \geq 1}, \sigma=\left(s_{k}(\mathbf{x})\right)_{k \geq 0}, \text { and } \tau=\left(t_{k+1}(\mathbf{x})\right)_{k \geq 0}
$$

Then we define a lower triangular matrix of polynomials

$$
M(\mathbf{x}):=M^{\pi, \sigma, \tau}(\mathbf{x})=\left[m_{n, k}(\mathbf{x})\right]_{0 \leq k \leq n}
$$

where the $m_{n, k}(\mathbf{x})$ are defined by the recursions

$$
m_{n+1, k}(\mathbf{x})=r_{k}(\mathbf{x}) m_{n, k-1}(\mathbf{x})+s_{k}(\mathbf{x}) m_{n, k}(\mathbf{x})+t_{k+1}(\mathbf{x}) m_{n, k+1}(\mathbf{x})
$$

subject to the initial conditions that $m_{0,0}(\mathbf{x})=1$ and $m_{n, k}(\mathbf{x})=0$ unless $0 \leq k \leq n$.

Wieghted Motzkin Paths

A Motzkin path is path that starts at $(0,0)$ and consist of three types of steps, up-steps $(1,1)$, down-steps $(1,-1)$, and level-steps $(1,0)$. We let $\mathcal{M}_{n, k}$ denote the set all paths that start at $(0,0)$, end at (n, k), and stays on or above the x-axis.

We weight
an up-step that ends at level k with $r_{k}(\mathrm{x})$,
a level-step that ends at level k with $s_{k}(\mathbf{x})$, and a down-step that ends at level k with $t_{k+1}(\mathrm{x})$.

$r_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

Figure 1: The weight of steps in Motzkin paths

Given a path P in $\mathcal{M}_{n, k}$, we let the weight of $P, w(P)$, equal the product of all the weights of the steps in P. Then if we let

$$
m_{n, k}(\mathbf{x})=\sum_{P \in \mathcal{M}_{n, k}} w(P)
$$

it is easy to see that the $m_{n, k}(\mathbf{x})$ satisfy the our recursions

Theorem 0.2. Let $J=J^{(\pi, \sigma, \tau)}$ be the tridiagonal matrix

$$
J=\left[\begin{array}{ccccc}
s_{0}(\mathbf{x}) & r_{1}(\mathbf{x}) & 0 & \ldots & 0 \\
t_{1}(\mathbf{x}) & s_{1}(\mathbf{x}) & r_{2}(\mathbf{x}) & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & r_{n-1}(\mathbf{x}) \\
0 & \ldots & 0 & t_{n-1}(\mathbf{x}) & s_{n-1}(\mathbf{x})
\end{array}\right]
$$

where $\sigma=\left(s_{i}(\mathbf{x})\right)_{i \geq 1}, \pi=\left(r_{i}(\mathbf{x})\right)_{i \geq 0}$, and $\tau=\left(t_{i+1}(\mathbf{x})\right)_{i \geq 0}$ are sequences of non-zero polynomials over \mathbb{R} with non-negative coefficients. If the coefficient matrix J is \mathbf{x}-totally positive, then the \mathbf{x}-Catalan-like numbers $m_{n, 0}(\mathbf{x})$ corresponding to (π, σ, τ) form a Stieltjes moment sequence of polynomials.

Lemma 0.3. Suppose that $A=\left[a_{i, j}(\mathbf{x})\right]_{i, j=1, \ldots, n}$ is triadiagonal matrix of non-negative polynomials in \mathbf{x} over \mathbb{R}. Then A is $\mathbf{x}-T P$ if and only if all of its consecutive principle minors are polynomials in \mathbf{x} with non-negative coefficients.

Lemma 0.4. Let $J=J^{(\pi, \sigma, \tau)}$ be the tridiagonal matrix

$$
J=\left[\begin{array}{ccccc}
s_{0}(\mathbf{x}) & r_{1}(\mathbf{x}) & 0 & \cdots & 0 \\
t_{1}(\mathbf{x}) & s_{1}(\mathbf{x}) & r_{2}(\mathbf{x}) & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & \ddots & r_{n-1}(\mathbf{x}) \\
0 & \cdots & 0 & t_{n-1}(\mathbf{x}) & s_{n-1}(\mathbf{x})
\end{array}\right]
$$

where $\sigma=\left(s_{i}(\mathbf{x})\right)_{i \geq 1}, \pi=\left(r_{i}(\mathbf{x})\right)_{i \geq 0}$, and $\tau=\left(t_{i+1}(\mathbf{x})\right)_{i \geq 0}$ are sequences of non-zero polynomials over \mathbb{R} with non-negative coefficients such that

1. $s_{0}(\mathbf{x}) \geq 1$,
2. $s_{i}(\mathbf{x}) s_{i+1}(\mathbf{x})-t_{i+1}(\mathbf{x}) r_{i+1}(\mathbf{x}) \geq_{\mathbf{x}} 0$ for all $i \geq 0$,
3. $s_{i+1}(\mathbf{x})-t_{i+1}(\mathbf{x}) r_{i+1}(\mathbf{x}) \geq \mathbf{x} 0$ for all $i \geq 0$, and
4. $s_{i+1}(\mathbf{x})-t_{i+1}(\mathbf{x}) r_{i+1}(\mathbf{x})-1 \geq \mathbf{x} 0$ for all $i \geq 0$.

Then A is $\mathbf{x}-T P$.

Lemma 0.5. Let

$$
\begin{aligned}
& \left(b_{1}\left(x_{1}, \ldots, x_{n}\right), b_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots\right) \text { and } \\
& \left(c_{1}\left(x_{1}, \ldots, x_{n}\right), c_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots\right)
\end{aligned}
$$

be sequences of polynomials in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ with non-negative coefficient over \mathbf{R}. Then the tridiagonal matrix

$$
J^{b, c}=\left[\begin{array}{cccc}
b_{1}(\mathbf{x})+c_{1}(\mathbf{x}) & 1 & & \\
b_{2}(\mathbf{x}) c_{1}(\mathbf{x}) & b_{2}(\mathbf{x})+c_{2}(\mathbf{x}) & 1 & \\
& b_{3}(\mathbf{x}) c_{2}(\mathbf{x}) & b_{3}(\mathbf{x})+c_{3}(\mathbf{x}) & \ddots \\
& \ddots & \ddots &
\end{array}\right]
$$

is $\mathbf{x}-T P$.

Given a polynomial $a\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(i_{1}, \ldots, i_{n}\right) \in I} c_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}}$ where I is finite index set and $c_{i_{1}, \ldots, i_{n}} \neq 0$ for all $\left(i_{1}, \ldots, i_{n}\right) \in I$, we let the degree of $a\left(x_{1}, \ldots, x_{n}\right), \operatorname{deg}\left(a\left(x_{1}, \ldots, a_{n}\right)\right)$, equal $\max \left(\left\{i_{1}+\cdots+i_{n}:\left(i_{1}, \ldots, i_{n}\right) \in I\right\}\right.$. We say that $a\left(x_{1}, \ldots, x_{n}\right)$ is homogeneous if of degree n if $i_{1}+\cdots+i_{n}=n$ for all $\left(i_{1}, \ldots, i_{n}\right) \in I$ and is inhomogeneous otherwise. If $a\left(x_{1}, \ldots, x_{n}\right)$ had degree n, then we let

$$
H_{x_{0}}\left(a\left(x_{1}, \ldots, x_{n}\right)\right)=x_{0}^{n} a\left(\frac{x_{1}}{x_{0}}, \frac{x_{2}}{x_{0}}, \ldots, \frac{x_{n}}{x_{0}}\right)
$$

For example, if $a\left(x_{1}, x_{2}\right)=1+x_{1}+x_{1} x_{2}+x_{1}^{3}$, then
$H_{x_{0}}\left(a\left(x_{1}, x_{2}\right)\right)=x_{0}^{3}\left(1+\frac{x_{1}}{x_{0}}+\frac{x_{1}}{x_{0}} \frac{x_{2}}{x_{0}}+\frac{x_{1}}{x_{0}} \frac{x_{1}}{x_{0}} \frac{x_{1}}{x_{0}}\right)=x_{0}^{3}+x_{0} x_{1} x_{2}+x_{1}^{3}$.
Clearly for any polynomial $a\left(x_{1}, \ldots, x_{n}\right)$ had degree n, $H_{x_{0}}\left(a\left(x_{1}, \ldots, x_{n}\right)\right)$ is a homogeneous polynomial.

Theorem 0.6. Suppose that
$\alpha=\left(a_{0}\left(x_{1}, \ldots, x_{n}\right), a_{1}\left(x_{1}, \ldots, x_{n}\right), a_{2}\left(x_{1}, \ldots, x_{n}\right), \ldots\right)$ is a Stieltjes moment sequence of polynomials such that for all $n \geq 0$, $\operatorname{deg}\left(a_{n}\left(x_{1}, \ldots, x_{n}\right)\right)=n$. Then $H_{x_{0}}(\alpha)=$ $\left(H_{x_{0}}\left(a_{0}\left(x_{1}, \ldots, x_{n}\right)\right), H_{x_{0}}\left(a_{1}\left(x_{1}, \ldots, x_{n}\right)\right), H_{x_{0}}\left(a_{2}\left(x_{1}, \ldots, x_{n}\right)\right), \ldots\right)$
is a Stieltjes moment sequence of polynomials.

Example 1.

Let $\pi=\left(r_{1}(q), r_{2}(q), r_{3}(q), \ldots\right)=(1,1,1, \ldots)$,
$\sigma=\left(s_{0}(q), s_{1}(q), s_{2}(q), \ldots\right)=(1,1+q, 1+q, \ldots)$ and
$\tau=\left(t_{1}(q), t_{2}(q), t_{3}(q), \ldots\right)=(q, q, q, \ldots)$. It is easy to check that
these sequences satisfy the hypothesis of Lemma 0.4.

$$
\begin{aligned}
a_{0,0}(q) & =1 \\
a_{n+1,0}(q) & =a_{n, 0}(q)+q a_{n, 1}(q) \text { for } n \geq 1, \text { and } \\
a_{n+1, k}(q) & =a_{n, k-1}(q)+(1+q) a_{n, k}(q)+q a_{n, k+1}(q) \text { for } 1 \leq k \leq n .
\end{aligned}
$$

where $a_{n, k}(q)=0$ unless $n \geq k \geq 0$.
$a_{n, k}(q)$ as the sum of the weights of Motzkin paths that start at $(0,0)$ and end at (n, k) where the weights of up-steps are 1 , the weights of down-steps are q and the weights of level-steps are 1 at level 0 and $1+q$ at levels $k>0$.

For example, if $A(q)=\left[a_{n, k}(q)\right]$, then

$$
A(q)=\left[\begin{array}{ccccc}
1 & & & & \\
1 & 1 & & & \\
1+q & 2+q & 1 & & \\
1+3 q+q^{2} & 3+5 q+q^{2} & 3+2 q & 1 & \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

Theorem 0.7. The sequence $\left(a_{n, 0}(q)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials.

Riordan Arrays

A Riordan array, denoted by $(d(x), h(x))$, is an infinite lower triangular matrix whose generating function of the k th column is $x^{k} h^{k}(x) d(x)$ for $k=0,1,2, \ldots$, where $d(0)=1$ and $h(0) \neq 0$

A Riordan array $R=\left[r_{n, k}\right]_{n, k \geq 0}$ can be characterized by two sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(z_{n}\right)_{n \geq 0}$ such that for $n, k \geq 0$,

$$
\begin{equation*}
r_{0,0}=1, \quad r_{n+1,0}=\sum_{j \geq 0} z_{j} r_{n, j}, \quad r_{n+1, k+1}=\sum_{j \geq 0} a_{j} r_{n, k+j} . \tag{5}
\end{equation*}
$$

Call $\left(a_{n}\right)_{n \geq 0}$ and $\left(z_{n}\right)_{n \geq 0}$ the A - and Z-sequences of R respectively.

Let $Z(x)=\sum_{n \geq 0} z_{n} x^{n}$ and $A(x)=\sum_{n \geq 0} a_{n} x^{n}$ be the generating functions of $\left(z_{n}\right)_{n \geq 0}$ and $\left(a_{n}\right)_{n \geq 0}$ respectively.

Then

$$
\begin{equation*}
d(x)=\frac{1}{1-x Z(x h(x))}, \quad h(x)=A(x h(x)) . \tag{6}
\end{equation*}
$$

The recursive matrix $R(a, b ; c, e)=\left[r_{n, k}\right]_{n, k \geq 0}$ defined by

$$
\left\{\begin{array}{l}
r_{0,0}=1, \quad r_{n+1,0}=a r_{n, 0}+b r_{n, 1} \tag{7}\\
r_{n+1, k+1}=r_{n, k}+c r_{n, k+1}+e r_{n, k+2}
\end{array}\right.
$$

The coefficient matrix of (7) is

$$
J(p, q ; s, t)=\left[\begin{array}{ccccc}
a & 1 & & & \tag{8}\\
b & c & 1 & & \\
& e & c & 1 & \\
& & e & c & \ddots \\
& & & \ddots & \ddots
\end{array}\right]
$$

Then $R(a, b ; c, e)$ is a Riordan array with $Z(x)=a+b x$ and $A(x)=1+c x+e x^{2}$. Let $R(a, b ; c, e)=(d(x), h(x))$. Then by (6), we have

$$
d(x)=\frac{1}{1-x(a+b x h(x))}, \quad h(x)=1+\operatorname{cxh}(x)+e x^{2} h^{2}(x) .
$$

It follows that

$$
h(x)=\frac{1-c x-\sqrt{1-2 c x+\left(c^{2}-4 e\right) x^{2}}}{2 e x^{2}}
$$

and

$$
d(x)=\frac{2 e}{2 e-b+(b c-2 a e) x+b \sqrt{1-2 c x+\left(c^{2}-4 e\right) x^{2}}} .
$$

Taking $a=1, b=q, c=1+q$ and $e=q$ in (8), we obtain the generating function of $a_{n, 0}(q)$ is

$$
d(x, q)=\frac{2}{1+(q-1) x+\sqrt{1-2(1+q) x+(1-q)^{2} x^{2}}} .
$$

(1) When we set $q=1$ in $A(q)$, we obtain the Catalan triangle of Aigner, OEIS [A039599]. $a_{n, 0}(1)=C_{n}$ where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the n-th Catalan number. It follows that $a_{n, 0}(q)$ is a q-analogue of the Catalan number C_{n}.
(2) When we set $q=2$ in $A(q)$, we obtain the triangle [A172094] and $a_{n, 0}(2)$ are the little Schröder numbers S_{n}. It follows that $a_{n, 0}(2 q)$ is a q-analogue of n-th little Schröder number S_{n}.
(3) When we set $q=3$, the sequence $\left(a_{n, 0}(3)\right)_{n \geq 0}$ is sequence [A007564]. It follows that $a_{n, 0}(3 q)$ is a q-analogue of the sequence [A007564].
(4) When we set $q=4$, the sequence $\left(a_{n, 0}(4)\right)_{n \geq 0}$ is sequence [A059231]. It follows that $a_{n, 0}(4 q)$ is a q-analogue of the sequence [A059231].

Example 2.

Let $\pi=\left(r_{1}(q), r_{2}(q), r_{3}(q), \ldots\right)=(1,1,1, \ldots)$,
$\sigma=\left(s_{0}(q), s_{1}(q), s_{2}(q), \ldots\right)=\left(1+q+q^{2}, 1+q+q^{2}, 1+q+q^{2}, \ldots\right)$
and $\tau=\left(t_{1}(q), t_{2}(q), t_{3}(q), \ldots\right)=(q, q, q, \ldots)$. It is easy to check that these sequences satisfy the hypothesis of Lemma 0.4.

$$
\begin{aligned}
d_{0,0}(q) & =1 \\
d_{n+1,0}(q) & =\left(1+q+q^{2}\right) d_{n, 0}(q)+q d_{n, 1}(q) \text { for } n \geq 1, \text { and } \\
d_{n+1, k}(q) & =d_{n, k-1}(q)+\left(1+q+q^{2}\right) d_{n, k}(q)+q d_{n, k+1}(q) \text { for } 1 \leq k \leq n
\end{aligned}
$$

where $d_{n, k}(q)=0$ unless $n \geq k \geq 0$.
$d_{n, k}(q)$ as the sum of the weights of Motzkin paths that start at $(0,0)$ and end at (n, k) where the weights of up-steps are 1 , the weights of down-steps are q, and the weights of level-steps $1+q+q^{2}$.
$D(q)=\left[d_{n, k}(q)\right]$, then
$D(q)=\left[\begin{array}{ccccc}1 & & & \\ 1+q+q^{2} & 1 & & \\ 1+3 q+3 q^{2}+2 q^{3}+q^{4} & 2+2 q+2 q^{2} & 1 & \\ \left(1+6 q+9 q^{2}+10 q^{3}+\right. & 3+8 q+9 q^{2}+6 q^{3}+3 q^{4} & 3+3 q+3 q^{2} & 1 & \\ \left.6 q^{4}+3 q^{5}+q^{6}\right) & \vdots & \vdots & \vdots & \ddots\end{array}\right]$

Theorem 0.8. The sequence $d_{n, 0}(q)$ is a Stieltjes moment sequence of polynomials.

Taking $a=1+q+q^{2}, b=q, c=1+q+q^{2}$ and $e=q$ in (8), we obtain the generating function of $d_{n, 0}(q)$ is
$d(x, q)=\frac{2}{1-\left(1+q+q^{2}\right) x+\sqrt{1-2\left(1+q+q^{2}\right) x+\left(\left(1+q+q^{2}\right)^{2}-4 q\right) x^{2}}}$.
In this case, the triangle $D(1)$ is [A091965] and the first column $\left(d_{n, 0}(1)\right)_{n \geq 0}$ is sequence [A002212]. $d_{n, 0}(1)$ counts the number of 3 -color Motzkin paths of length n and the number of restricted hexagonal polynomials with n cells.

Example 3.

Let $\pi=\left(r_{1}(p, q), r_{2}(p, q), r_{3}(p, q), \ldots\right)=(1,1,1, \ldots)$, $\sigma=\left(s_{0}(p, q), s_{1}(p, q), s_{2}(p, q), \ldots\right)=(1+p+q, 1+p+q, 1+p+q, \ldots)$ and $\tau=\left(t_{1}(p, q), t_{2}(p, q), t_{3}(p, q), \ldots\right)=(q, q, q, \ldots)$. It is easy to check that these sequences satisfy the hypothesis of Lemma 0.4.

$$
\begin{aligned}
c_{0,0}(p, q) & =1, \\
c_{n+1,0}(p, q) & =(1+p+q) c_{n, 0}(p, q)+q c_{n, 1}(p, q) \text { for } n \geq 1, \text { and } \\
c_{n+1, k}(p, q) & =c_{n, k-1}(p, q)+(1+p+q) c_{n, k}(p, q)+q c_{n, k+1}(p, q) \text { for } 1 \leq k \leq n
\end{aligned}
$$

where $c_{n, k}(p, q)=0$ unless $n \geq k \geq 0$.
$c_{n, k}(p, q)$ as the sum of the weights of Motzkin paths that start at $(0,0)$ and end at (n, k) where the weights of up-steps are 1 , the weights of down-steps are q, and the weights of level-steps $1+p+q$.

For example, if $C(p, q)=\left[c_{n, k}(p, q)\right]$, then

Theorem 0.9. The sequence $\left(c_{n, 0}(p, q)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials.

Taking $a=1+p+q, b=q, c=1+p+q$ and $e=q$ in (8), we obtain the generating function of $c_{n, 0}(p, q)$ is $d(x, p, q)=\frac{2}{1-(1+p+q) x+\sqrt{1-2(1+p+q) x+\left((1+p+q)^{2}-4 q\right) x^{2}}}$.

1. When we set $p=q=1$ in $\left(c_{n, 0}(1,1)\right)_{n \geq 0}$, we obtain the $1,3,10,36,137, \ldots$ which is sequence [A002212]. Besides counting 3-colored Motzkin path, it also the number of restricted hexagonal polynomials with n-cells.
2. When we set $p=1$ and $q=2$ in $\left(c_{n, 0}(p, q)\right)_{n \geq 0}$, we obtain the $1,4,18,88,456,2464, \ldots$ which is sequence [A024175].
3. When we set $p=2$ and $q=2$ in $\left(c_{n, 0}(p, q)\right)_{n \geq 0}$, we obtain the $1,4,20,112,672,4224, \ldots$ which is sequence [A003645] whose n-th term is $2^{n} C_{n+1}$.

Variations of Example 3

Define $t_{k}^{(s)}(p, q)$ to be q if $k \leq s$ and p if $k>s$ and let $\tau^{(s)}=\left(t_{1}^{(s)}(p, q), t_{2}^{(s)}(p, q), t_{3}^{(s)}(p, q), \ldots\right)$.
It is easy to see the sequences

$$
\begin{aligned}
& \pi=\left(r_{1}(p, q), r_{2}(p, q), r_{3}(p, q), \ldots\right)=(1,1,1, \ldots) \\
& \sigma=\left(s_{0}(p, q), s_{1}(p, q), s_{2}(p, q), \ldots\right)=(1+p+q, 1+p+q, 1+p+q, \ldots)
\end{aligned}
$$

$$
\text { and } \tau^{(s)} \text { satisfy the hypothesis of Lemma } 0.4 \text { for all } s \text {. }
$$

Then we can define the polynomials $c_{n, k}^{(s)}(p, q)$ by

$$
\begin{aligned}
c_{0,0}^{(s)}(p, q) & =1, \\
c_{n+1,0}^{(s)}(p, q) & =(1+p+q) c_{n, 0}^{(s)}(p, q)+t_{1}^{(s)}(p, q) c_{n, 1}^{(s)}(p, q) \text { for } n \geq 1, \text { and } \\
c_{n+1, k}^{(s)}(p, q) & =c_{n, k-1}^{(s)}(p, q)+(1+p+q) c_{n, k}^{(s)}(p, q)+t_{k+1}^{(s)}(p, q) c_{n, k+1}^{(s)}(p, q)
\end{aligned}
$$

for $1 \leq k \leq n$ where $c_{n, k}^{(s)}(p, q)=0$ unless $n \geq k \geq 0$.
Theorem 0.10. For all $s \geq 0,\left(c_{n, 0}^{(s)}(p, q)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials.

One of the advantages of this set up is that we can set $p=0$ in such sequences. In particular, $\left(c_{n, 0}^{(s)}(0, q)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials. In such a situation, $c_{n, 0}^{(s)}(0, q)$ is the sum over the weights of 2 -colored Motzkin paths of height $\leq s$. That is, the level steps can be colored with color 0 which has weight 1 or colored with color 1 which has weight q. The down-steps all have weight q and the up-steps all have weight 1 .

Multivariate variations of Example 3.

Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ where $n \geq 3$ and let $1 \leq s_{1}<\cdots<s_{n-1}$.
Then let $r_{i}(\mathbf{x})=1$ for all $i \geq 1$,
$s_{i}(\mathbf{x})=1+x_{1}+\cdots+x_{n}$ for all $i \geq 1$, and $t_{i}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})$ equal x_{1} if $i \leq s_{1}, x_{j}$ if $s_{j-1}<i \leq s_{j}$, and x_{n} if
$i>s_{n-1}$.

Then let $\pi=\left(r_{1}(\mathbf{x}), r_{2}(\mathbf{x}), r_{3}(\mathbf{x}), \ldots\right)=(1,1,1, \ldots)$,
$\sigma=\left(s_{0}(\mathbf{x}), s_{1}(\mathbf{x}), s_{2}(\mathbf{x}), \ldots\right)$ and
$\tau^{\left(s_{1}, \ldots, s_{n-1}\right)}=\left(t_{1}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x}), t_{2}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x}), t_{3}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x}), \ldots\right)$. It
is easy to check that for any $1 \leq s_{1}<\cdots<s_{n-1}$, these sequences satisfy the hypothesis of Lemma 0.4.

In this case, we are considering the polynomials defined by
$c_{0,0}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})=1$,
$c_{n+1,0}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})=$
$\left(1+x_{1}+\cdots+x_{n}\right) c_{n, 0}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})+t_{1}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x}) c_{n, 1}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})$
for $n \geq 1$, and
$c_{n+1, k}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})=$
$c_{n, k-1}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})+\left(1+x_{1}+\cdots+x_{n}\right) c_{n, k}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})+$
$t_{k+1}^{\left(s_{1}, \ldots, s_{n-1}\right)} c_{n, k+1}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})$
for $1 \leq k \leq n$,
where $c_{n, k}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})=0$ unless $n \geq k \geq 0$.
$c_{n, k}(\mathbf{x})$ as the sum of the weights of Motzkin paths that start at $(0,0)$ and end at (n, k). where the weights of up-steps are 1 , the weights of down-steps ending at level k are $t_{k+1}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})$, and the weights of level-steps $1+x_{1}+\cdots+x_{n}$.

In particular, we can interpret $c_{n, 0}(\mathbf{x})$ as weighted sum over $n+1$-colored Motzkin paths. That is, the levels of the Motzkin path can be colored with one of $\mathrm{n}+1$ colors, namely, color 0 which has weight 1 , color i which has weight x_{i} for $i=1, \ldots, n$, and the down-steps that end at level k have weight $t_{k+1}^{\left(s_{1}, \ldots, s_{n-1}\right)}(\mathbf{x})$.
Theorem 0.11. For all $1 \leq s_{1}<\cdots<s_{n-1}$,
$\left(c_{n, 0}^{\left(s_{1}, \ldots, s_{n-1}\right)}\left(x_{1}, \ldots, x_{n}\right)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials.

Example 4.

Let $\pi=\left(r_{1}(p, q, r), r_{2}(p, q, r), r_{3}(p, q, r), \ldots\right)=(1,1,1, \ldots)$, $\sigma=\left(s_{0}(p, q, r), s_{1}(p, q, r), s_{2}(p, q, r), \ldots\right)=(q+r, p+q+r, p+q+r, \ldots)$ and $\tau=\left(t_{1}(p, q, r), t_{2}(p, q, r), t_{3}(p, q, r), \ldots\right)=$ $(q(p+r), q(p+r), q(p+r), \ldots)$.

$$
\begin{aligned}
i_{0,0}(p, q, r) & =1, \\
i_{n+1,0}(p, q, r) & =(q+r) i_{n, 0}(p, q, r)+q(p+r) i_{n, 1}(p, q, r) \text { for } n \geq 1, \text { and } \\
i_{n+1, k}(p, q, r) & =i_{n, k-1}(p, q, r)+(p+q+r) i_{n, k}(p, q, r)+q(p+r) i_{n, k+1}(p, q, r)
\end{aligned}
$$

for $1 \leq k \leq n$ where $i_{n, k}(p, q, r)=0$ unless $n \geq k \geq 0$.

We can interpret $i_{n, k}(p, q, r)$ as the sum of the weights of Motzkin paths that start at $(0,0)$ and end at (n, k) where the weights of up-steps are 1 , the weights of the down-steps are $q(p+r)$, and the weights of the level steps at level 0 is $q+r$ and the weights of the level steps at level $k \geq 1$ are $p+q+r$.

For example, if $I(p, q, r)=\left[i_{n, k}(q)\right]$, then

$$
\begin{aligned}
& I(p, q, r)= \\
& \begin{array}{ll}
1 & \\
q+r & 1 \\
\left(p q+q^{2}\right)+3 q r+r^{2} & (p+2 q)+2 r \\
\left(p^{2} q+3 p q^{2}+q^{3}\right)+ & \left(p^{2}+5 p q+3 q^{2}\right)+(3 p+8 q) r+3 r^{2} \\
\left(4 p q+6 q^{2}\right) r+6 q r^{2}+r^{3} &
\end{array} \\
& \begin{array}{l}
\text { (2p+3q)}+3 r
\end{array} \\
& 1
\end{aligned}
$$

Theorem 0.12. The sequence $\left(i_{n, 0}(p, q, r)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials.
(1) $i_{n, 0}(p, q, 0)=\sum_{k=1}^{n} \frac{1}{k}\binom{n-1}{k-1}\binom{n}{k-1} q^{k} p^{n-k}$ from which it follows that $i_{n, 0}(1,1,0)=C_{n}$ where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the $n^{\text {th }}$ Catalan number.
(2) $i_{n, 0}(p, q, 1)=\sum_{k=1}^{n} \frac{1}{k+1}\binom{n+k}{k}\binom{n}{k} q^{k} p^{n-k}$ from which it follows that $\left(i_{n, 0}(1,1,1)\right)_{n \geq 0}$ is sequence [A006318] which is the sequence of large Schöoder numbers.
(3) We can show that $\left(i_{n, 0}(1,1, r)\right)_{n \geq 0}$ is the triangle [A060693].
(4) The sequence $\left(i_{n, 0}(1,1,2)\right)_{n \geq 0}$ starts out
$1,3,12,57,300,1686,9912, \ldots$ which is sequence [A047891].
(5) The sequence $\left(i_{n, 0}(1,2,1)\right)_{n \geq 0}$ starts out
$1,3,13,67,381,2307,14598, \ldots$ which is sequence [A064062] of the generalized Catalan numbers.
(6) The sequence $\left(i_{n, 0}(2,1,1)\right)_{n \geq 0}$ starts out $1,2,7,32,166,926,5419,32816, \ldots$ which is sequence [A108524].
(7) The sequence $\left(i_{n, 0}(2,2,1)\right)_{n \geq 0}$ starts out
$1,3,15,93,645,4791,37275, \ldots$ which is sequence [A103210].
(8) The sequence $\left(i_{n, 0}(2,1,2)\right)_{n \geq 0}$ starts out
$1,3,13,71,441,2955,20805, \ldots$ which is sequence [A162326].
(9) The sequence $\left(i_{n, 0}(1,2,2)\right)_{n \geq 0}$ starts out
$1,2,7,32,166,926,5419,32816, \ldots$ which is sequence [A243626].
(10) The sequence $\left(i_{n, 0}(1,1,3)\right)_{n \geq 0}$ starts out
$1,4,20,116,740,5028,35700, \ldots$ which is sequence [A082298].
(11) The sequence $\left(i_{n, 0}(1,3,1)\right)_{n \geq 0}$ starts out
$1,4,22142,1006,7570,59410, \ldots$ is sequence [A243626].
(12) The sequence $\left(i_{n, 0}(3,1,1)\right)_{n \geq 0}$ starts out
$1,2,8,44,276,1860,13140, \ldots$ does not appear in the OEIS.

Example 5

For any $\sigma=\sigma_{1} \cdots \sigma_{n} \in S_{n}$, let $($ des $)(\sigma)=\left|\left\{i: \sigma_{i}>\sigma_{i+1}\right\}\right|$ and $(r i s)(\sigma)=\left|\left\{i: \sigma_{i}<\sigma_{i+1}\right\}\right|$. Wang and Zhu (2016) proved that $\left(E_{n}(q)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials where

$$
E_{n}(q)=\sum_{k=1}^{n} E_{n, k} q^{k}=\sum_{\sigma \in S_{n}} q^{\operatorname{des}(\sigma)} .
$$

It follows from Theorem 0.6 that $\left(E_{n}(p, q)\right)_{n \geq 0}$ is a Stieltjes moment sequence of polynomials where

$$
E_{n}(p, q)=\sum_{k=1}^{n} E_{n, k} q^{k} p^{n-k}=\sum_{\sigma \in S_{n}} q^{\operatorname{des}(\sigma)} p^{\mathrm{ris}(\sigma)+1}
$$

Let $\left(b_{1}(p, q), b_{2}(p, q), b_{3}(p, q), \ldots\right)=(p, 2 p, 3 p, \ldots)$ and $\left(c_{1}(p, q), c_{2}(p, q), c_{3}(p, q), \ldots\right)=(0, q, 2 q, \ldots)$. Using Lemma 0.5 , we see that $J^{b, c}:=J^{\pi, \sigma, \tau}$ where

$$
\begin{aligned}
& \pi=\left(r_{1}(p, q), r_{2}(p, q), r_{3}(p, q), \ldots\right)=(1,1,1, \ldots), \\
& \sigma=\left(s_{0}(p, q), s_{1}(p, q), s_{2}(p, q), \ldots\right)=(p, 2 p+q, 3 p+2 q, \ldots) \text { and } \\
& \tau=\left(t_{1}(p, q), t_{2}(p, q), t_{3}(p, q), \ldots\right)=\left(p q, 2^{2} p q, 3^{2} p q, \ldots\right) .
\end{aligned}
$$

$$
h_{0,0}(p, q)=1
$$

$$
h_{n+1,0}(p, q)=p h_{n, 0}(p, q)+p q h_{n, 1}(p, q) \text { for } n \geq 1, \text { and }
$$

$$
h_{n+1, k}(p, q)=h_{n, k-1}(p, q)+((k+1) p+k q) h_{n, k}(p, q)+(k+1)^{2} p q h_{n, k+1}(p, q)
$$

for $1 \leq k \leq n$ where $h_{n, k}(p, q)=0$ unless $n \geq k \geq 0$.
$h_{n, k}(p, q)$ as the sum of the weights of Motzkin paths that start at $(0,0)$ and end at (n, k) where the weights of up-steps are 1 , the weights of down-steps that ends at level k is $(k+1)^{2} p q$, and the weights of the level steps at level k are $(k+1) p+k q$.

One can show that $h_{n, 0}(p, q)=E_{n}(p, q)$.

Theorem 0.13. The sequence $\left(\sum_{\sigma \in S_{n}} p^{\operatorname{ris}(\sigma)+1} q^{\operatorname{des}(\sigma)}\right)_{n \geq 0}$ is a
Stieltjes moment sequence of polynomials.

