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Abstract

Background: Regulatory T (T,eg) cells have an immunosuppressive function in cancer, but the underlying
mechanism of immunosuppression in the tumor microenvironment (TME) is unclear.

Methods: We compared the phenotypes of T cell subsets, including T4 cells, obtained from peripheral blood,
malignant effusion, and tumors of 103 cancer patients. Our primary focus was on the expression of immune
checkpoint (IC)-molecules, such as programmed death (PD)-1, T-cell immunoglobulin and mucin-domain containing
(TIM)-3, T cell Ig and ITIM domain (TIGIT), and cytotoxic T lymphocyte antigen (CTLA)-4, on T4 cells in paired
lymphocytes from blood, peritumoral tissue, and tumors of 12 patients with lung cancer. To identify the
immunosuppressive mechanisms acting on tumor-infiltrating T4 cells, we conducted immunosuppressive
functional assays in a mouse model.

Results: CD8", CD4" T cells, and Tiq cells exhibited a gradual upregulation of IC-molecules the closer they were to
the tumor. Interestingly, PD-1 expression was more prominent in T..q cells than in conventional T (Teon,) cells. In
lung cancer patients, higher levels of IC-molecules were expressed on Teq cells than on Teony cells, and Teq cells
were also more enriched in the tumor than in the peri-tumor and blood. In a mouse lung cancer model, IC-
molecules were also preferentially upregulated on T.q cells, compared to Tcqn, cells. PD-1 showed the greatest
increase on most cell types, especially Teq cells, and this increase occurred gradually over time after the cells
entered the TME. PD-1 high-expressing tumor-infiltrating T4 cells displayed potent suppressive activity, which
could be partially inhibited with a blocking anti-PD-1 antibody.

Conclusions: We demonstrate that the TME confers a suppressive function on T4 cells by upregulating IC-
molecule expression. Targeting IC-molecules, including PD-1, on T4 cells may be effective for cancer treatment.
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Background

The recent development of immune checkpoint inhibi-
tors (ICIs) has revolutionized cancer treatment. ICls spe-
cific for anti-cytotoxic T lymphocyte antigen (CTLA)-4
or anti-programmed death (PD)-1 have improved patient
survival and have been approved for the treatment of
several cancer types, including non-small cell lung can-
cer (NSCLC), melanoma, head and neck cancer, bladder
cancer, and renal cell cancer [1-3].

The tumor microenvironment (TME) and the immune
system play critical roles in cancer progression and clin-
ical outcome [4, 5]. Regulatory T (T,e,) cells are highly
immunosuppressive and contribute to the maintenance
of self-tolerance and immune homeostasis in humans [6,
7]. T,eg cells infiltrate tumors and promote their pro-
gression by suppressing antitumor immunity in the
TME. Depleting T,.; cells can lead to spontaneous
tumor regression due to enhanced antitumor response
[7, 8]. Interaction of T,., cells with TME enhances their
immunosuppressive function and proliferative capacity.
Several studies have shown that tumor-infiltrating T,
cells are phenotypically distinct from those in peripheral
blood (PB) and normal tissues [9, 10], suggesting that
their immunosuppressive function depends on environ-
mental factors.

T,eg cells suppressive functions are associated with the
expression of several immune checkpoint molecules
(ICs), such as PD-1, CTLA-4, T-cell immunoglobulin
and mucin-domain containing-3 (TIM)-3, and T cell Ig
and ITIM domain (TIGIT) [3, 6, 11-14]. CTLA-4 and
TIGIT act as tumor suppressors and thus, modulate the
immune response in the TME [6, 15, 16]. Although the
PD-1/PD ligand (PD-L)1 interaction was shown to pro-
mote the conversion of conventional T (T.yny) cells into
T,cg cells to maintain the latter’s population [17-19], it
remains controversial whether PD-1 expression by T,
cells suppresses antigen-specific T cell immune re-
sponses [20-22].

Recent studies have reported that IC-molecules are
upregulated on T, cells within the TME or upon
chronic infection and that T,, cells-mediated immuno-
suppression correlates with the expression of IC-
molecules on these cells [6, 12]. The upregulation of
these molecules has also been linked to tumor progres-
sion, as it likely reinforces the suppressive function of
Tyeg cells in the TME. We previously reported that an
increased level of PD-1 on T, cells during chronic viral
infection enhances CD8" T cell immune suppression via
interaction with PD-L1 on CD8" T cells [12]. On the
contrary, high PD-1 expression on T, cells indicates
dysfunctional and exhausted IFN-y-secreting T, cells
that are enriched in tumor infiltrates and have possibly
lost their suppressive function [23]. So far, the precise
role of PD-1 in the function of tumor-infiltrating T,
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cells in the TME is controversial. Given the significance
of PD-1 in modulating immune responses and its para-
doxical role as both an activation and exhaustion
marker, clarifying the function of PD-1-positive T, cells
and their role in regulating anti-tumor immune re-
sponses is important [23].

To evaluate the suppressive function of tumor-
infiltrating T,cg cells in the TME, we comprehensively
compared the phenotypes of T cell subsets, including
Tyeg cells, obtained from PB, malignant effusion (ME),
and tumor (TM) samples of patients with cancer. We
also characterized T,eg cells in paired lymphocyte sam-
ples obtained from blood, peri-tumoral tissue, and tu-
mors of patients with lung cancer. Using a lung cancer
mouse model, we investigated the suppressive function
and mechanism of action of tumor-infiltrating T..s cells
in the TME. We found that PD-1 was upregulated in
tumor-infiltrating T,., cells and played a role in sup-
pressing CD8" T cell proliferation through PD-1/PD-L1
interactions. These results suggest that infiltrated PD-1-
expressing T, cells in TME are a potential therapeutic
target for anti-cancer treatment.

Methods

Study design

Patients with stage IV cancer with ME and patients with
cancer who planned to undergo surgical resection be-
tween April 2012 and December 2017 at the Severance
Hospital were prospectively enrolled. Inclusion criteria
were as follows: 1) over 20 years old; 2) stage IV cancer
with malignant pleural effusion or ascites confirmed by
cytology, or cancer with scheduled surgery; and 3) writ-
ten informed consent. We collected 300 cc of effusions
and simultaneously obtained 10cc of PB from patients
with stage IV cancer with ME, if available. In patients
who underwent surgery, we collected TM-adjacent nor-
mal tissue, and 10 cc of PB to isolate peripheral blood
lymphocytes (PBLs). The study was approved by the In-
stitutional Review Board of Severance Hospital. We cate-
gorized the samples into three groups: 1) PBLs, 2) ME
from patients with stage IV cancer, and 3) TM from pa-
tients with cancer who underwent surgery. To analyze
the characteristics of T,¢g cells in TME, we also collected
paired peritumoral tissue lymphocytes (pTILs), tumor-
infiltrating lymphocytes (TILs), and PBLs at the same
day from 12 patients with NSCLC who underwent cura-
tive resection.

Isolation of PB mononuclear cells and ME lymphocytes

PB mononuclear cells were isolated from 10ccPB col-
lected into EDTA tubes by separation over a Percoll
(Sigma-Aldrich) gradient. Lymphocytes were isolated
from 500cc of ME by discontinuous density gradient
centrifugation on Percoll. To isolate TILs, lung TMs
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were chopped and then incubated with a solution con-
taining 1 mg/mL collagenase type IV (Worthington Bio-
chemical) and 0.01 mg/mL DNasel (Sigma-Aldrich) at
37 °C for 25 min. TILs were isolated by Percoll gradient
after washing dissociated tissues with ice-cold
RPMI1640.

Flow cytometry and antibodies

Flow cytometry was performed using a FACS CANTOII
(BD Biosciences, Franklin Lakes, NJ, USA) and Cyto-
FLEX (Beckman Coulter, IN, USA). Data were analyzed
using FlowJo software (Tree Star, OR, USA).

For immunolabeling of human samples, fluorophore-
conjugated monoclonal antibodies against the following
proteins were used: CD4 (RPA-T4), CD3 (OKT3), PD-1
(EH12.2H7), and CTLA-4 (BNI3) (all from Biolegend, San
Diego, CA, USA); TIM-3 (344823) and TIGIT (741182)
(both from R & D Systems, Minneapolis, MN, USA); CD25
(M-A251) (BD Biosciences, Franklin Lakes, NJ, USA); and
Foxp3 (PCH101) (eBioscience, San Diego, CA, USA). The
LIVE/DEAD Fixable Red Dead Cell Stain kit was from Invi-
trogen (Carlsbad, CA, USA). T, cells labeled with various
antibodies (except for the antibody against Foxp3) were
fixed and permeabilized with Foxp3 fixation/
permeabilization solution (eBioscience). Foxp3 antibody
was then administered for intracellular labeling of T cells.
The proportion of CD4" and CD8" T cells among total
lymphocytes was determined, and the fraction of Foxp3-
positive CD4" T cells was quantified.

For immunolabeling of mouse samples, fluorophore-
conjugated monoclonal antibodies against the following
proteins were used: CD4 (RM4-5), Ly5.1 (A20), PD-1
(29F.1A12), TIM-3 (RMT3-23), NK1.1 (PK136), and DX5
(DX5) (all from Biolegend); and CD8 (53-6.7), CD25
(PC61.5), CTLA-4 (UC10-4B9), TIGIT (G1GD7), and F4/
80 (BMS8) (all from eBioscience); and CD11b (M1/79) (BD
Biosciences). The LIVE/DEAD Fixable Near-IR Dead Cell
Stain kit was from Invitrogen. T, cells labeled with various
antibodies (except for the antibodies against Foxp3 and
CTLA-4) were fixed and permeabilized with Foxp3 fix-
ation/permeabilization solution (eBioscience, San Diego,
CA, USA). Foxp3 antibody was then administered for intra-
cellular labeling of T, cells. The proportions of CD4" and
CD8" T cells among lymphocytes were determined, and
the fraction of Foxp3-positive CD4" T cells was quantified.
To prevent myeloid cells from non-specific staining, sam-
ples were preincubated with anti-CD16/32 (93)
(eBioscience) before immunolabeling with fluorophore-
conjugated antibodies.

Mouse TM model and lymphocyte isolation

Female C57BL/6, C57BL/6-Rag2™'", and C57BL/6-Ly5.1
congenic mice (5—-6 weeks) were purchased from Charles
River Laboratories (Wilmington, MA, USA) and Jackson
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Laboratories (Bar Harbor, ME, USA). To generate lung
TM bearing mice, 5 x 10> TC-1 cells were intravenously
injected into C57BL/6 mice via the tail-vein. Mice were
sacrificed on day 21 post-injection. Lymphocytes were
isolated from the spleen, normal lung, and lung tumor
as previously described [9]. The number of tumor nod-
ules on left upper lobe of the lung was counted at day
12, 16, and 21 post-injection. All animal protocols were
approved by the Institutional Animal Care and Use
Committee of the Yonsei University Laboratory Animal
Research Center (2013-0115).

In vitro suppression assay using mouse lymphocytes

For the T, cells suppression assay, CD4"CD25" T, cells
(10°/well) were co-cultured with CD8" T cells (10°/well)
with Dynabeads mouse T-activator CD3/CD28 (Thermo
Fisher Scientific, Waltham, MA, USA) in a 96-well U-
bottom plate at 37 °C for 72 h. For the CellTrace Violet di-
lution assay, CD8" T cells were isolated from the spleen of
naive mice using a CD8" T Cell Isolation kit (Miltenyi Bio-
tec, Bergisch Gladbach, Germany) and labeled with 5uM
CellTrace Violet (Thermo Fisher Scientific). CD4"CD25*
Treg cells were separately isolated from the spleen and
tumor of TM-bearing mice on day 21 post-injection using
CD4"CD25" Regulatory T Cell Isolation kit (Miltenyi Bio-
tec, Bergisch Gladbach, Germany). To inhibit cell migra-
tion, Transwell membranes (0.4 mm pore; BD Biosciences)
were inserted into 24-well plate. CD4"CD25" T, cells
(10%/well) were co-cultured with CD8" T cells (10°/well)
with Dynabeads mouse T-activator CD3/CD28 (Thermo
Fisher Scientific) in a 24-well plate at 37 °C for 72 h.

For PD-1 blockade in tumor-infiltrating T,
CD4"CD25" T, cells (2.5x 10%/well) isolated from
tumor lymphocytes of TM bearing mice on day 14 post-
injection were preincubated with 10 pg/mL anti-PD-1
antibody (RMP1-14) or rat IgG2a isotype control (2A3)
(Bio X Cell) at 4°C for 1h, washed twice, and then co-
cultured with CD8" T cells (10°/well) in the presence of
mouse T-activator CD3/CD28 Dynabeads for 68 h.

Adoptive cell transfer for in vivo suppression assay

To examine the functionality of TIL T, (PD-lhi) and
spleen T eq (PD-1'°) cells, CD4*CD25" T,eq cells were iso-
lated from the tumor and spleen of TM bearing mice at
day 21 post-injection using CD4"'CD25" Regulatory T Cell
Isolation kit (Miltenyi Biotec). Ly5.1" CD8" T cells were
isolated from naive C57BL/6-Ly5.1 congenic mice. Ly5.1"
CD8" T cells (2x10° were injected iv. into recipient
Rag2’/ ~ mice alone or with Ly5.2" TIL T, or spleen T,
(1 x 10°%). At day 7 after cell transfer, splenocytes isolated
from Rag2™~ mice were analyzed for homeostatic expan-
sion of the Ly5.1" CD8" T cell population using FACS.
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In vitro suppression assay using human lymphocytes
CD4"CD25" T, cells were isolated from the tumor tis-
sue and peripheral blood of NSCLC patients, using hu-
man CD4'CD25'CD127%™~ Regulatory T Cells
Isolation Kit II (Miltenyi Biotec, Bergisch Gladbach,
Germany). CD8" T cells were isolated from the paired
peripheral blood of NSCLC patients using human CD8"
T Cell Isolation kit (Miltenyi Biotec, Bergisch Gladbach,
Germany) and subsequently labeled with 5 uM CellTrace
Violet. The CD8" T cells (10°/well) were co-cultured
with CD4"CD25" T, cells (5 x 10*/well) isolated from
either tumor tissue or peripheral blood in the presence
of 2.5 pl/well of Dynabeads human T-activator CD3/28
(Thermo Fisher Scientific) at 37 °C for 72 h.

Multi-color immunofluorescence analysis

For multicolor immunofluorescence analysis, lungs were
isolated, fixed with 2% paraformaldehyde/phosphate buff-
ered saline overnight at 4 °C, and then embedded in OCT
compound (Sakura). Tissue blocks were frozen in 2-methyl
butane and cooled on dry ice. Frozen blocks were cut to a
thickness of 8 um and mounted on the silane-coated slide.
Sections were stained with 4,6-diamidino-2-phenylindole
(DAPL Invitrogen) and with antibodies for anti-CD8a
(Clone 53-6.7), anti-CD4 (clone RM4-5), anti-CD279
(clone RMP1-30), and anti-GFP (clone 1GFP63) for ampli-
fication of Foxp3-GFP signals (Biolegend). Streptavidin-
conjugated horseradish peroxidase was used for staining of
biotin-conjugated antibodies, and TSA Cyanine 3 Tyrami-
detetramethylrhodamine reagent (SAT704A001EA; Perki-
nElmer) was subsequently added for amplification. Images
was acquired using a microscope (Carl Zeiss Co. Ltd) and
analyzed with Image] 1.50b software.

Statistical analysis

Data were analyzed using Prism 5.0 software (GraphPad
Inc., CA, USA). The Student’s ¢-test, one-way analysis of
variance, and the least significant difference test were
used, where appropriate, to evaluate the significance of
differences among groups. All statistical analyses were
conducted with a significance level of a = 0.05 (P < 0.05).

Results

Patient characteristics

We enrolled 103 patients: 72 were stage IV cancer pa-
tients with ME, and 31 were patients with operable dis-
ease (not stage IV) who underwent surgical resection.
Detailed information of the patients from which PB, ME,
or TM were obtained is described in Additional file 6:
Table S1. The total number of tumor specimens was di-
vided into three groups based on the specimen type: PB,
20.7% (28/135); ME, 56.2% (76/135); and TM, 23.1%
(31/135). Detailed analyses of immune subsets as well as
the levels of their immune checkpoints were performed
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in PBLs (PB group), effusion-infiltrating lymphocytes
(EILs) (ME group), and TILs (TM group). Primary can-
cer types in the ME group were NSCLC, 43.1% (31/72);
gastric cancer, 22.2% (16/72); colon cancer, 5.6% (4/72),
and breast cancer, 5.6% (4/72). The types of ME were as-
cites, 59.7% (43/76) and pleural effusion, 45.8% (33/76),
with four patients having both (Additional file 6: Table
S1). The presence of malignant cancer cells and TILs in
TM or ME was pathologically or cytologically confirmed
(Fig. 1a).

Tconv With exhausted phenotypes are abundant in TM and
ME

To investigate T cell subsets in three different tumor
specimens, we compared the ratio of CD4" and CD8" T
cells in PBLs, EILs, and TILs isolated from PB, ME, and
TM, respectively. The percentage of CD4" T cells was
higher among TILs than among PBLs or EILs. In con-
trast, the percentage of CD8" T cells was markedly lower
among TILs than among PBLs or EILs (Fig. 1b), suggest-
ing that the migration of cytotoxic lymphocytes (CTLs)
into the TM was inhibited.

The phenotypes of PBLs, ElLs, and TILs were com-
pared by quantifying CD4" and CD8" T cells expressing
PD-1 and TIM-3. The percentage of PD-1- or TIM-3-
expressing CD4" or CD8" T cells was the highest among
TILs, with lower percentages in EILs and PBLs (Fig. 1c,
d), suggesting that T cells derived from TM and ME
show more pronounced T cell exhaustion than those de-
rived from PBLs.

High expression of PD-1 in T, cells of ME and TM

We next examined how T, cells expressing forkhead
box (Fox) p3 are distributed and differ phenotypically in
PB, ME, and TMs. T, cells showed greater accumula-
tion in TILs than in PBLs and EILs of patients or in
PBLs of healthy controls (Fig. 2a). Interestingly, T g cells
in TILs expressed a higher level of PD-1 than those in
PBLs and EILs; moreover, the PD-1-expressing Foxp3*
population among CD4" T cells was also larger in TILs
than in EILs, which, in turn, had a larger population
than PBLs (Fig. 2b). To further characterize CD4" T
cells in different tissues, we compared PD-1 in Foxp3*
and Foxp3™ CD4" T cells (Fig. 2c). The proportion of
PD-1-expressing cells in both CD4" cells was larger in
EILs and TILs than in PBLs. These results indicate that
PD-1 expression by T,y cells and Tcony cells clearly re-
flect the TME, as PD-1 expression increased in the fol-
lowing order: TILs > EILs > PBLs.

We next investigated whether the characteristics of
CD4" T cells, CD8" T cells, and T, cells were altered
in MEs depending on the cancer type. As shown in Add-
itional file 1: Figure S1, the abundance of these cells and
their expression of PD-1 in MEs were comparable in
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different types of cancer, although it is worth noting that
there were more T, cells than there were CD4" or
CD8" Teony cells expressing PD-1. Interestingly, the de-
gree of infiltration of PD-1" T, cells did not differ among
ME samples derived from the different types of cancer, in-
dicating that the presence of PD-1" T, cells in ME is a
common feature across cancers of distinct histological ori-
gin (Additional file 1: Figure S1). Additionally, we com-
pared the phenotype of T,., between ascites and pleural
effusion. As shown in Additional file 2: Figure S2, signifi-
cant differences of the percentages of Foxp3® T, and
PD-1" Foxp3" T, cells were not observed between

ascites and pleural effusion. Moreover, the ascites and
pleural effusions had a similar expression rate of PD-1 in
Foxp3™ T,eg and Foxp3™ Tcopy cells.

Tumor-infiltrating T,.4 are abundant in patients with lung
cancer and express multiple IC-molecules

To clarify the characteristics of T,y cells in the TME,
we compared the frequency of T, cells and the expres-
sion of IC-molecules such as PD-1, TIM-3, TIGIT, and
CTLA-4 in paired sets of tissue-derived lymphocytes,
such as PBLs, pTILs, and TILs collected from 12 pa-
tients with NSCLC. As expected, T, cells were
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the scatterplot represent the mean values. ns, not significant; **P < 0.01, ***P < 0.001 (Mann-Whitney test)

more highly enriched in TILs than in pTILs and
PBLs (Fig. 3a). Moreover, more T,,-expressing ICs
were found among TILs than among pTILs and
PBLs (Fig. 3b).

We also compared IC-molecule expression on differ-
ent tumor-infiltrating T cell subsets. Among four differ-
ent IC-molecules, PD-1 most clearly distinguished TME
in all T cell subsets, because a significant increase in the
PD-1" population was observed in the following order
TIL > pTIL > PBL (Fig. 3c). Notably, PD-1 was higher in
tumor-infiltrating Foxp3™T,., cells (~98%) than in
Foxp3 Teony cells (~82%) or CD8' T opn, cells (78%).
Furthermore, the number of PD-1-expressing tumor-
infiltrating Foxp3" T,., cells was greater than the num-
ber of tumor-infiltrating Foxp3" T, cells expressing
other IC-molecules. It is therefore conceivable that PD-1
expression on T, cells is a TME marker. Additionally,
we performed the in vitro suppressive assay using iso-
lated CD4"CD25" T, cells from the peripheral blood

and tumor tissue of NSCLC patients and isolated CD8"
T cells from the peripheral blood. Each tumor-
infiltrating T,.; cells or peripheral T, cells was co-
cultured with peripheral CD8" T cells with aCD3/CD28
stimulation. CD8" T cells proliferated at a high rate in
the absence of T,, cells and were more potently inhib-
ited by pD-1M tumor-infiltrating T,s cells than by PD-
1'° PBMC T\ cells (Fig. 3d).

Tieqg Numbers and the expression of IC-molecules are

altered during cancer progression in a mouse model

We previously showed that immune-exhaustion markers
were highly expressed in tumor-infiltrating T, cells of
patients with NSCLC. We therefore investigated the T
phenotype in greater detail in different tissues, using a
mouse lung cancer model. We compared the expression
levels of IC-molecules, such as PD-1, TIM-3, and TIGIT,
on CD4" and CD8" T cells in different tissues from
naive and TM-bearing mice. As in patients with cancer
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tissue, the expression of IC-molecules in CD4" and
CD8" T cells was much higher in lung TM than in PB
or spleen (Fig. 4a, b). Among the populations expressing
IC-molecules, PD-1-expressing CD4" and CD8" T cells
were more abundant in the TM.

We next examined whether IC-molecules are pref-
erentially upregulated on T,g cells (compared to
Teonv) in TM, as was observed in patient tissues. PB,
spleen, and lung lymphocytes were isolated at differ-
ent time points after TC-1 injection (Fig. 5a). Starting
at 12days after TC-1 injection, an increase in the
number of Foxp3"™ T, cells was observed in TM and
the T, cells fraction reached 20% of total CD4" T
cells, a nearly 3-fold increase compared to that in the
non-TM lung (Fig. 5b). At 3 weeks after TC-1 injec-
tion, Foxp3" T, cells were more abundant in the

TM than in the PB or spleen (Fig. 5c). Foxp3" T,cg
cells in TM showed significant increases in PD-1,
TIM-3, TIGIT, and CTLA-4, compared to other tis-
sues (Fig. 5d). Moreover, tumor-infiltrating T, cells
expressed much higher levels of IC-molecules than
tumor-infiltrating Tcon, (Fig. 5e). Most T,es cells (~
80%), but only a low frequency of Tcon, (~20%)
expressed PD-1 in TM. PD-1 was markedly upregu-
lated 21 days after TC-1 injection, and the same trend
was observed for TIM-3 and TIGIT, although the in-
creases in the levels of these molecules were less
prominent (Fig. 5f). Unlike PD-1, TIM-3, and TIGIT,
CTLA-4 was already upregulated in T, cells before
TC-1 injection and its expression progressively in-
creased over time (Fig. 5f). Thus, expression of IC-
molecules, especially PD-1, on T, cells increases
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with TM progression. As tumor numbers increased,
immune checkpoints including PD-1, TIM-3, TIGIT,
and CTLA-4 increased (Additional file 3: Figure S3).

Immunosuppressive function of tumor-infiltrating T,.q in
CD8" T cell response is mediated by PD-1/PD-L1
interaction
Among all IC-molecules examined, PD-1 was most
highly upregulated in tumor-infiltrating T,., cells. To
determine the role of PD-1 on tumor-infiltrating T,
cells, in the regulation of the CD8" T cell response, we
compared the suppressive activity of T., expressing
high- and low-levels of PD-1 (PD-1M T\eg cells from lung
TM 3 weeks after TC-1 injection vs. PD-1"° Tyeg cells
from the spleen of the same TM-bearing mice).
CD4"CD25" T,eq cells, isolated using a microbead-based
Treg isolation kit (CD4"CD25" Regulatory T Cell Isola-
tion kit), was confirmed to be ~90% purified Foxp3™
Tyeq cells (Additional file 4: Figure S4). Each population
was co-cultured with naive CD8" cells with or without
stimulation by aCD3/CD28. CD8" T cells proliferated at
a high rate in the absence of T, cells and were more
potently inhibited by PD-1" tumor-infiltrating Tyeg cells
than by PD-1'°spleen T,cg cells (Fig. 6a). Similarly, inter-
feron (IFN)-y production was also more strongly sup-
pressed by PD-1" tumor-infiltrating T,eg than by pD-1%°
spleen T, cells.

To investigate the role of PD-1 upregulation, induced
by tumor-infiltrating T,., cells, we examined whether
the interaction between PD-1 on tumor-infiltrating T,

cells and PD-L1 on CD8" T cells is required for im-
munosuppression in patients with cancer. PD-1 on
tumor-infiltrating T, cells was blocked by incubation
with an anti-PD-1 antibody. Unbound antibody was sub-
sequently removed and the cells were co-cultured with
CD8" T cells. We prepared T, cells expressing an
intermediate level of PD-1 that were isolated from lung
TM in 2- rather than in 3-weeks after injection because
T\eg cells, highly expressing PD-1, isolated at later time-
points, also co-expressed other IC-molecules (Fig. 5),
making it difficult to differentiate the role of PD-1 in the
suppressive function of T, cells from that of others.
Additionally, to clarify whether the potent suppressive
function of PD-1M tumor-infiltrating T, cells is medi-
ated via cell-to-cell contact between T,.; and CD8" cells
or soluble factors produced from T, cells, we con-
ducted the experiments with transwell membrane system
to block cell migration (Fig. 6b). Transwell membranes
were inserted into 24-well plate. CTV labeled CD8" T
cells and CD4"CD25" T,.; were placed into lower and
upper wells, respectively, and aCD3/CD28 was added
into both wells for stimulation. Suppression of T cell
proliferation was not observed in the presence of the
Transwell membrane. This data demonstrated that the
suppression of CD8" T cell proliferation by T, requires
cell to cell contact between each cell population (Fig.
6b). Next, we performed the in vivo experiment with
TIL T,y and spleen T, cellsalong with Ly5.1"CD8" T
cells. In line with in vitro data, when TIL T, cells was
injected, CD8" T cell proliferation was significantly
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inhibited compared with spleen T,.;, and no T, cells
(Fig. 60).

As shown in Fig. 6d, tumor-infiltrating T,cg cells that
had been blocked with anti-PD-1 antibody, were signifi-
cantly impaired in their ability to suppress the prolif-
eration of CD8" T cells and IFN-y production as
compared to isotype antibody-treated tumor-
infiltrating T, cells. Given that both mouse and hu-
man CD8" T cells can upregulate low affinity Fc re-
ceptors following activation [24, 25], we tested
whether CD8" T cells upregulate Fc receptors in our
system. We obtained splenocytes of TC-1 tumor bear-
ing mice. We stained splenocytes with CD8, CD44,

CD16/32 (FcyRIII/II), and CellTrace Violet and com-
pared the expression of Fc receptor between with and
without stimulation. Significant differences of CD16/
32 were not observed between groups with and with-
out stimulation (Additional file 5: Figure S5A). To
validate the CD16/32 antibody, we analyzed the ex-
pression of CD16/32 on NK cells and macrophages.
This antibody can specifically detect CD16/32 on
these cells, so we excluded the possibility that no de-
tection of CD16/32 on CD8" T cells after stimulation
could be a problem of CD16/32 antibody (Additional
file 5: Figure S5B). Taken together, our data demon-
strated that the effect of anti-PD-1 is direct effect by
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immunosuppression using a mouse lung cancer
model. Most tumor-infiltrating T, cells showed
higher PD-1 expression than T, cells, implying that
PD-1-expressing T, cells are a biological marker of
the TME. Indeed, in T cells derived from TMs of
patients with NSCLC, PD-1 was the most clearly up-
regulated IC-molecule. As previously reported, these
cells exhibited an enhanced immunosuppressive func-
tion that was correlated with the extent of PD-1 up-
regulation [12]. We speculate that PD-1-expressing

blocking of PD-1 pathway signaling rather than the
effect of anti-PD-1 antibody mediated by ADCC.

A multi-color immunofluorescence analysis revealed
that CD8, PD-1, and Foxp3 were co-localized in mouse
tumor tissues (Fig. 6e), implying that CD8" cells and
Foxp3™ T, cells spatially interact in the TME.

Discussion
In this study, we examined the phenotype and func-
tion of T,y cells as well as CD4" and CD8" T ony

cells that infiltrated into the TME, including the ME
and TM from patients with cancer. We also investi-
gated the mechanism by which T., cells induce

tumor-infiltrating T,g cells induce immunosuppres-
sion through the interaction of PD-1 and PD-LI,
which may contribute to immune escape in TME.
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Clarifying the link between this phenotype and en-
hanced suppressive function of tumor-infiltrating T,
cells can provide insight into their suppressive mech-
anism in patients with cancer.

The predominant function of PD-1 in T, cells seems
to be similar to that of CTLA-4; both proteins contrib-
ute to the maintenance of T,., immunosuppressive func-
tion [15]. However, PD-1 expression on T, cells
differed by cell location. For instance, PD-1 was
expressed by T, cells in TMs but not in normal tissue
or PBLs as depicted in Fig. 3. In contrast, T, cells had
high basal CTLA-4 levels irrespective of the tissue of ori-
gin. This supports our assertion that PD-1 on T, cells
is a more useful marker for characterizing the TME. We
also examined whether the upregulation of PD-1 on
tumor-infiltrating T,e; cells can reinforce their basal
immune-suppressive function. High PD-1 expression in
T, cells was associated with the suppression of CD8" T
cells and PD-1 blockade abrogated the immune-
suppressive function of T, cells, suggesting that an
interaction between PD-1 on T, cells and PD-L1
expressed by another cell type—likely CD8" T cells
[26]—is necessary for immunosuppression. Thus, ele-
vated PD-1 expression on T, cells is a potential marker
for immune escape in patients with cancer. These find-
ings were consistent with our previously reported data
that PD-1 upregulation in T, cells and the interaction
between PD-1 on T, cells and PD-L1 expressed by ef-
fector T cells enhanced T cell-mediated immune sup-
pression during chronic viral infection [12]. Thus, an
immunotherapy targeting T,.; and PD-1 could be highly
effective in patients with cancer.

We also investigated tumor-infiltrating T,eg and Teony
cells obtained from ME of patients with stage IV cancer.
Most of the earlier studies of TME T, cells were per-
formed in mice and focused on T, cells phenotype.
Studies in patients with stage IV cancer have been ham-
pered by the difficulty of obtaining sufficient TMs for
analysis of T cell populations. To overcome this limita-
tion, we developed an experimental model using ME
from human patients with stage IV cancer as representa-
tive TME of stage IV cancer. This model will allow fu-
ture examinations of various mechanistic aspects of
human cancer through functional assays.

Several studies have reported IC expression on intra-
tumoral T, cells and suggested potential roles of these
ICs in the regulation of the immune response in mice [6,
15, 27]. We also showed here that ICs other than PD-1
were upregulated in T, cells. Studies on the relative
contributions of these IC-molecules to immunosuppres-
sion in the TME may lead to the development more ef-
fective immunotherapies.

Regarding other PD-1-expressing immune cells than
CD8" T cells and T, cells in TME and their role, Irving
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et al. reported that tumor-associated macrophages (TAMs)
expressed PD-1 and PD-1-expressing TAMs increased over
time in mouse model and progressive disease in human
cancers [28]. PD-1 expressed on TAMs reduced their
phagocytic potency against tumor cells and blockade of
PD-1 pathway restored the macrophage phagocytosis,
resulting in enhancing anti-tumor activity of TAMs. This
data suggests that PD-1 expressed by TAMs is one of the
mechanism for immune evasion. PD-1 expression was also
described on NK cells in many different types of human
and mouse cancers, where the PD-1 expressed by NK cells
negatively regulated NK cell function even though its mo-
lecular mechanisms are not clearly demonstrated to date
[29-34]. In addition, PD-1 has been reported to be
expressed on innate lymphoid cells (ILCs), prevalently ILCs
type 3 (ILC3s), as well as NK cells in pleural effusion of pri-
mary and metastatic tumors, albeit the role of PD-1 on
ILC3s was not addressed [35].

Based on these reports, it is plausible that PD-1 expressed
by different types of immune cells including CD8+ T cells,
Teg cells, NK cells, and ILCs in the TME probably contrib-
utes to immune evasion, leading to promotion of tumor
cells. However, it has not been addressed yet which types of
PD-1-expressing immune cells are most effectively involved
in the PD-1-mediated immunosuppression. In addition, to
compare the immunosuppressive activity of each immune
cell subset, the level of PD-1 expression on each type of cells
should be examined. In this regard, further study is needed
to determine whether other PD-1-expressing immune cells
than T, cells in the TME compensate for a lack of T
cells and which types of PD-1-expressing immune cells
mostly impact on immune suppression in the TME.

T,cg cells expansion in the TME is widely recognized
as an obstacle to successful immunotherapy in patients
with cancer [5]. Previously, we demonstrated that T,.g
cells depletion using an anti-CD25 antibody increased
the abundance of functional antigen-specific CD8" T
cells during chronic viral infection [12]. Furthermore,
treatment with a neutralizing antibody also caused the
elimination of non-T,, and rapid replenishment of T,
cells [36]. Thus, functional inactivation of T, cells and
rejuvenation of exhausted T cells by targeting overex-
pressed PD-1 combined with temporal depletion of T,
cells expressing IC-molecules may be a promising strat-
egy to limit cancer progression.

Conclusions

In conclusion, our study provides insights into T,s cells
function and their suppressive mechanism in patients
with cancer. We showed that the suppressive function of
tumor-infiltrating T, cells was enhanced by the in-
crease in their relative proportion and by the upregula-
tion of the expression of inhibitory receptors, such as
PD-1, TIM-3, and CTLA-4.
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Additional file 1: Figure S1. PD-1 expression on CD4", CD8", or Teq in
malignant effusion according to the different types of cancer patients in-
cluding lung cancer, gastric cancer, breast cancer, and others.

Additional file 2: Figure S2. Comparison of T,y phenotype between
ascites and pleural effusion. (A) Percentage of Foxp3 in total CD4* T cells
between ascites and pleural effusion (B) Percentage of PD-1"Foxp3™ in
total CD4™ T cells between ascites and pleural effusion (C) Percentage of
PD-1" in Foxp3'CD4 T,y between ascites and pleural effusion (Left), per-
centage of PD-1%in Foxp3™ CD4 T cells between ascites and pleural
effusion.

Additional file 3: Figure S3. Correlation of the immune checkpoint
including PD-1, TIM-3, TIGIT and CTLA4 expressed on T,eg as tumor nod-
ule number increased. (A) PD-1, (B) TIM-3, (C) TIGIT, and (D) CTLA-4 ex-
pression on T4 according to the increased tumor nodules. The number
of tumor nodules was measured at day 12, 16, and 21 post-injection (n =
4-7 mice per group). Data are representative of two independent experi-
ments. *P < 0.05, **P < 0.01, ***P < 0.001 (Student's t-test).

Additional file 4: Figure S4. Purification of tumor-infiltrating T,eq Using
microbead-based Treg isolation kit. T,.q were separately isolated from the
spleen and from TM-bearing mice using a CD4*CD25" Regulatory T Cell
Isolation kit for suppressive function analysis. Treg, isolated using a
microbead-based Treg isolation kit, demonstrated ~ 90% purified Foxp3*
Treg compared with the 16% prior to isolation.

Additional file 5: Figure S5. Expression of CD16/32 on CD8" T cells
after in vitro TCR activation and NK cells and macrophages. (A) The
expression of CD16/32 on purified CD8* T cells activated by CD3/28
Dynabeads for 3 d. (B) The expression of CD16/32 on Dx5"NK1.1* NK
cells and CD11b*F4/80" macrophages isolated from the spleen of naive
mouse.

Additional file 6: Table S1. Baseline characteristics of patients and
specimens.
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