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In the tumor immune microenvironment (TIME), tumor cells interact with various cells and
operate various strategies to avoid antitumor immune responses. These immune escape
strategies often make the TIME resistant to cancer immunotherapy. Neutralizing immune
escape strategies is necessary to overcome resistance to cancer immunotherapy. Immune
checkpoint receptors (ICRs) expressed in effector immune cells inhibit their effector
function via direct interaction with immune checkpoint ligands (ICLs) expressed in
tumor cells. Therefore, blocking ICRs or ICLs has been developed as a promising
cancer immunotherapy by reinvigorating the function of effector immune cells. Among
the ICRs, programmed cell death 1 (PD-1) has mainly been antagonized to enhance the
survival of human patients with cancer by restoring the function of tumor-infiltrating (TI)
CD8+ T cells. It has been demonstrated that PD-1 is expressed not only in TI CD8+ T cells,
but also in other TI immune cells and even tumor cells. While PD-1 suppresses the function
of TI CD8+ T cells, it is controversial whether PD-1 suppresses or amplifies the suppressive
function of TI-suppressive immune cells (e.g., regulatory T cells, tumor-associated
macrophages, and myeloid cells). There is also controversy regarding the role of
tumor-expressing PD-1. Therefore, a precise understanding of the expression pattern
and function of PD-1 in each cell subset is important for improving the efficacy of cancer
immunotherapy. Here, we review the differential role of PD-1 expressed by various TI
immune cells and tumor cells. We focused on how cell-type-specific ablation or blockade
of PD-1 affects tumor growth in a murine tumor model. Furthermore, we will also describe
how the blockade of PD-1 acts on TI immune cells in human patients with cancer.
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1 INTRODUCTION

CD8+ T cells in the TIME are exposed to chronic antigen
stimulation (Wherry and Kurachi, 2015). Chronic antigen
stimulation gradually leads CD8+ T cells to an exhausted state
(Wherry and Kurachi, 2015). The exhausted CD8+ T cells have
distinct characteristics compared to effector CD8+ T cells
(Wherry and Kurachi, 2015). First, exhausted CD8+ T cells
express a variety of immune checkpoint receptors (ICRs),
including programmed cell death 1 (PD-1), T cell
immunoglobulin and mucin-domain containing-3 (TIM3),
lymphocyte activation gene 3 protein (LAG3), and T cell
immunoreceptor with Ig and ITIM domains (TIGIT) (Wherry
and Kurachi, 2015; Anderson et al., 2016; Zelba et al., 2019). ICRs
transduce inhibitory signals into exhausted CD8+ T cells
(McLane et al., 2019). Among various ICRs, exhausted CD8+

T cells express high levels of PD-1. Second, exhausted CD8+

T cells are transcriptionally altered (Khan et al., 2019). Various
transcription factors responsible for T cell exhaustion (e.g.,
Eomes, TOX, and Blimp1) are expressed in exhausted CD8+

T cells (Shin et al., 2009; Buggert et al., 2014; Wang et al., 2019a;
Khan et al., 2019; McLane et al., 2019; Kim et al., 2020; Han et al.,
2021). Eventually, exhausted CD8+ T cells are unable to respond
to tumor cells. As functional restoration of exhausted CD8+

T cells is important for effective antitumor immunity,
advanced analytic tools (e.g., transposase-accessible chromatin
using sequencing (ATAC-seq) and single-cell RNA sequencing
(scRNA-seq)) have been applied to identify the epigenetic
characteristics and transcriptomes of exhausted CD8+ T cells
to improve our understanding of cancer immunotherapy
(Thommen et al., 2018; Wang et al., 2019a; Khan et al., 2019;
Kim et al., 2020). Interestingly, it has been revealed that
exhaustion also occurs in other immune cells (e.g., CD4+

T cells, and TAMs) and that high PD-1 expression is strongly
associated with exhaustion in all cell types (Wherry and Kurachi,
2015; Zha et al., 2021).

Cancer immunotherapy using anti-PD-1 antibodies (PD-1
therapy) has been thought to enhance antitumor immunity by
reinvigorating the functionality of tumor-infiltrating (TI) PD-
1+CD8+ T cells (Wherry and Kurachi, 2015; Thommen et al.,
2018; Kim K. H. et al., 2019). Recently, it has been demonstrated
that PD-1 is also expressed on other cells (e.g., Tregs, TAMs, and
tumor cells) and that PD-1 therapy enhances antitumor
immunity in a diverse cell-dependent manner (Karyampudi
et al., 2016; Xiao et al., 2016; Gordon et al., 2017; Yao et al.,
2018; Moral et al., 2020; Strauss et al., 2020; Zhang and Liu, 2020;
Lim et al., 2021; Zha et al., 2021). PD-1 in effector immune cells
mainly inhibits their effector function and promotes tumor
progression (Gordon et al., 2017; Zhang and Liu, 2020; Zha
et al., 2021). However, the function of PD-1 in some
suppressive immune cells and tumor cells has been
controversial (Kleffel et al., 2015; Lowther et al., 2016;
Stathopoulou et al., 2018; Kim H. R. et al., 2019; Kamada
et al., 2019; Wang X. et al., 2020; Kumagai et al., 2020;
Yoshida et al., 2020; Lim et al., 2021). This unclear function of
PD-1 in specific cell types makes it difficult to predict the
responsiveness of PD-1 therapy. Therefore, an accurate

understanding of PD-1 function in each cell type is crucial for
successful PD-1 therapy. This review will focus on PD-1
expression in various immune cells and tumor cells in terms
of expression, function, therapeutic effect, and resistance to PD-1
therapy.

2 CD8+ T CELLS

CD8+ T cells are a key population in the TIME for effective
antitumor immunity because CD8+ T cells directly kill tumor
cells by secreting effector cytokines (e.g., IFN-γ, TNF-α, and IL-2)
(Hashimoto et al., 2018). TI CD8+ T cells highly express PD-1
(Wherry and Kurachi, 2015; Hashimoto et al., 2018) (Table 1).

2.1 Expression
In CD4+ and CD8+ T cells, the mechanism of PD-1 expression is
well documented (Macian et al., 2001; Oestreich et al., 2008;
Mathieu et al., 2013; Wang et al., 2019a; Khan et al., 2019;
Kim et al., 2020; Han et al., 2021). When the T cell receptor
(TCR) on CD8+ T cells is engaged with the antigen-restricted
major histocompatibility complex (MHC) I, CD8+ T cells express
PD-1 on their surface (Agata et al., 1996). Various transcription
factors (e.g., NFAT2, AP-1, Notch, Foxo1, and TOX) have been
identified as inducers of PD-1 expression in CD8+ T cells upon
T cell activation (Macian et al., 2001; Oestreich et al., 2008;
Mathieu et al., 2013; Staron et al., 2014; Bally et al., 2016; Khan
et al., 2019). Among these transcription factors, TOX is recently
identified and emphasized as a major transcription factor
responsible for inducing the exhaustion of TI CD8+ T cells
(Wang et al., 2019a; Khan et al., 2019; Kim et al., 2020; Han
et al., 2021). Mechanistically, TOX, induced by NFAT2, regulates
the transcriptional and epigenetic effects of exhausted T cells
(Khan et al., 2019). PD-1 is downregulated by FBXO38 E3 ligase
in a proteasome-dependent manner (Meng et al., 2018). Notably,
PD-1 expression in Tregs is unaffected by FBXO38 ablation,
while PD-1 expression in CD8+ T cells and CD4+CD25− T cells is
augmented by FBXO38 ablation (Meng et al., 2018), suggesting
immune cell type-specific regulation of PD-1 expression.

2.2 Function
PD-1 has been found to inhibit the effector function of CD8+

T cells to prevent excessive activation (Sharpe and Pauken, 2018).
Mechanistically, PD-1 suppresses various TCR downstream
signaling pathways responsible for effector T cell function
(e.g., AKT, PI3K, and mTOR) (Riley, 2009; Patsoukis et al.,
2012; Pauken and Wherry, 2015; Sharpe and Pauken, 2018).
According to this mechanism, TI PD-1+CD8+ T cells lose their
ability to proliferate and produce effector cytokines upon TCR
engagement by PD-1 (Pauken and Wherry, 2015; Sharpe and
Pauken, 2018). Recently, several studies have demonstrated that
PD-1 recruits SHP2 phosphatase and preferentially inhibits
CD28 costimulatory signaling rather than TCR signaling
(Kamphorst et al., 2017b; Hui et al., 2017; Kim et al., 2021).
Kamphorst et al. also demonstrate that CD28-deficient T cells is
not affected by PD-1 therapy. Additionally, PD-1 signaling
regulates transcriptomic and epigenetic programs in TI CD8+
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T cells by inducing TOX expression (Khan et al., 2019). The
chromatin regions that are related to effector T cell differentiation
are denied being accessed by TOX (Khan et al., 2019). Meanwhile,
the accessibility of genes related to T cell exhaustion is enhanced
by TOX (Khan et al., 2019). These results indicate that PD-1
promotes T cell exhaustion and inhibits T cell activation via
TOX-induced transcriptional and epigenetic reprogramming
(Figure 1). Collectively, PD-1 represses the functionality of TI
CD8+ T cells by inhibiting TCR/CD28 signaling and regulating
transcriptional and epigenetic programs (Figure 1).

2.3 Blockade Effect
PD-1 therapy restores the functionality of TI CD8+ T cells in
various tumor types (Table 2). Mechanistically, as mentioned

above, functional restoration of TI PD-1+CD8+ T cells by PD-1
therapy is dependent on CD28 expression on TI PD-1+CD8+

T cells (Kamphorst et al., 2017b; Hui et al., 2017; Kim et al., 2021).
Therefore, examination of CD28 expression on TI PD-1+CD8+

T cells can predict the responsiveness of PD-1 therapy in human
cancer patients. PD-1 therapy also restores the proliferative
capacity of TI PD-1+CD8+ T cells in the peripheral blood
(Kamphorst et al., 2017a; Kim K. H. et al., 2019). This finding
suggests that increased Ki67+ populations in circulating PD-
1+CD8+ T cells after PD-1 therapy could predict the
responsiveness of PD-1 therapy in various tumor types
(Kamphorst et al., 2017a; Kim K. H. et al., 2019). Additionally,
the ratio of Ki67+ population fold change in PD-1+CD8+ T cells to
tumor burden positively correlates with the responsiveness of

TABLE 1 | PD-1 expressed on tumor-infiltrating immune cells.

Cell
types

Expression Function Mechanism References

CD8+

T cells
Positive regulation TCR
engagement, NFAT, AP-1, Foxo1,
Notch, and TOX Negative
regulation FBXO38

Inhibition of CD8+ T cell-mediated
cytotoxicity and CD8+ T cell
proliferation. Induction of T cell
exhaustion

Inhibition of TCR downstream signaling
and CD28 costimulatory signaling

Bally et al. (2016), Hui et al. (2017),
Kamphorst et al. (2017b), Khan et al.
(2019), Macian et al. (2001), Mathieu et al.
(2013), Meng et al. (2018), Oestreich et al.
(2008), Staron et al. (2014)

Tconvs Inhibition of Tconv function (cytokine
secretion, DC maturation, and
cytotoxicity). Induction of T cell
exhaustion

Inhibition of TCR downstream signaling
and IL-21 expression

Balanca et al. (2021), Bronsert et al.
(2020), Nagasaki et al. (2020), Oh et al.
(2020), Sanchez-Alonso et al. (2020), Shi
et al. (2018a), Shi et al. (2018b)

Tregs Positive regulation TCR
engagement and SREBP
signaling

Inhibition of Treg suppressive
function and stability

Inhibition of the phosphorylation of AKT
and S6

Kamada et al. (2019), Kumagai et al.
(2020)

Amplification of Treg suppressive
function and stability

Maintenance of Foxp3 expression by
inhibiting AEP. Maintenance of lipid
metabolism by inhibiting the activation
of PI3K and the phosphorylation of S6
and AKT

Lim et al. (2021), Stathopoulou et al.
(2018), Yoshida et al. (2020)

B cells Positive regulation CD40
signaling, JNK, p38, NF-κB, and
Bcl6 Negative regulation IL-4
signaling

Induction of IL-10 expression
(human advanced-stage
hepatocellular carcinoma)

Mechanism was not specified Wang et al. (2019b), Xiao et al. (2016)

NK cells Positive regulation GCs, IL-12, IL-
15, and IL-18

Inhibition of NK cell-mediated
cytotoxicity

Inhibition of the activation of PI3K/AKT
signaling

Concha-Benavente et al. (2018), Liu et al.
(2017), Quatrini et al. (2021)

ILCs Positive regulation IL-2, IL-7, and
IL-33 (ILC2)

Inhibition of expression of ILC2
effector molecules and CD103+ DC-
mediated CD8+ T cell activation

Mechanism was not specified Moral et al. (2020), Taylor et al. (2017),
Wang et al. (2020b)

TAMs Positive regulation Type I IFN, NF-
κB, TLR2/4 agonist, and MyD88/
IL-1R axis Negative regulation
c-Cbl

Inhibition of phagocytosis. Induction
of M1 to M2 transition

Mechanism was not specified Dhupkar et al. (2018), Gordon et al.
(2017), Kono et al. (2020), Rao et al.
(2020)

DCs Positive regulation IL-10 Inhibition of cytokine secretion,
costimulatory molecules
expression, antigen presentation,
and CD8+ T cell function

Inhibition of NF-κB translocation into
the nucleus by preventing IκBα
degradation

Karyampudi et al. (2016), Krempski et al.
(2011), Lamichhane et al. (2017), Lim
et al. (2016)

Induction of T cell activation PD-L1 blockade by cis interaction Zhao et al. (2018)
Myeloid
cells

Positive regulation G-CSF, GM-
CSF, and TLR4 agonist

Inhibition of glycolysis, pentose
phosphate pathway, TCA cycle, and
cholesterol synthesis. Generation of
MDSCs

Inhibition of ERK1/2, mTORC1, and
STAT1 activation

Strauss et al. (2020)

Tconvs, CD4+Foxp3- conventional T cells; Tregs, CD4+Foxp3+ regulatory T cells; NK, cells, natural killer cells; ILCs, innate lymphoid cells; TAMs, tumor-associated macrophages; DCs,
dendritic cells. TCR, T cell receptor; NFAT, nuclear factor of activated T cells; AP-1, activator protein 1; TOX, thymocyte selection-associated with highmobility group box protein; FBXO38,
f-box protein only protein 38; IL, interleukin; SREBP, sterol regulatory element-binding protein; JNK, c-jun N-terminal kinase; NF-κB, nuclear factor kappa-light-chain-enhancer of activated
B cells; Bcl6, B cell lymphoma 6; GC, glucocorticoid; PI3K, phosphoinositide 3-kinase; IFN, interferon; TLR, toll-like receptor; MyD88, myeloid differentiation factor 88; c-Cbl, castias B
lymphoma; IκBα, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; PD-L1, programmed death-ligand 1; G-CSF, granulocyte colony-stimulating factor;
GM-CSF, granulocyte-macrophage colony-stimulating factor; TCA, cycle, tricarboxylic acid cycle; MDSCs, myeloid-derived suppressive cells; ERK, extracellular signal-regulated kinase;
mTOR, mammalian target of rapamycin; STAT, signal transducer and activator of transcription.
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PD-1 therapy, indicating that pre-existing proliferative TI PD-
1+CD8+ T cell frequency is important in predicting the
responsiveness of PD-1 therapy (Huang et al., 2017). Notably,
in hepatocellular carcinoma (HCC), PD-1 therapy is recently
shown to induce tumor progression (Pfister et al., 2021). Non-
alcoholic steatohepatitis (NASH) is a well-known trigger of HCC
(Dudek et al., 2021; Pfister et al., 2021). In liver tissue,
CXCR6+PD-1+CD8+ T cells are defined as highly auto-
aggressive T cells (Dudek et al., 2021; Pfister et al., 2021).
Tissue damage induced by auto-aggressive CD8+ T cells could
lead to the occurrence of HCC in a NASH mouse model (Pfister
et al., 2021). They also demonstrate that CD8+ T cell depletion in
NASH mice reduces the incidence of HCC (Pfister et al., 2021).
Furthermore, they identify that PD-1 therapy-induced auto-
aggressive CD8+ T cell activation results in the promotion of
tumor progression (Pfister et al., 2021). These results indicate that
PD-1 therapy-mediated excessive T cell activation could induce

tissue damage and subsequently lead to tumor mutation and
progression. Therefore, timely and context-dependent PD-1
therapy is very important for inducing antitumor immunity
and preventing side effects.

2.4 Resistance to PD-1 Therapy
TI CD8+ T cells express PD-1 as well as other ICRs (e.g., TIM3,
TIGIT, and LAG3) (Fourcade et al., 2010; Matsuzaki et al., 2010;
Anderson et al., 2016). Because other ICRs transduce additional
inhibitory signals into TI CD8+ T cells, PD-1 therapy could not be
effective in enhancing antitumor immunity by reinvigorating the
functionality of TI CD8+ T cells (Fourcade et al., 2010; Matsuzaki
et al., 2010). Furthermore, the expression pattern of immune
checkpoint ligands (ICLs) is related to the responsiveness to PD-1
therapy (Lee et al., 2020). Human patients with cancer, who do
not express PD-L1 on tumor cells, tend to not respond to PD-1
therapy (Lee et al., 2020). This result suggests that the

FIGURE 1 | The function of PD-1 expressed on various immune and tumor cells. PD-1 is expressed on various immune and tumor cells. PD-1 expressed on
effector immune cells usually inhibits their effector function. The function of PD-1 expressed on suppressive immune cells and tumor cells has been controversial.
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responsiveness of PD-1 therapy is related to the direct interaction
between PD-1 and PD-L1. As mentioned above, human cancer
patients with TI PD-1+CD28−CD8+ T cells show resistance to
PD-1 therapy (Kamphorst et al., 2017b; Hui et al., 2017; Kim
et al., 2021). These TI PD-1+CD28−CD8+ T cells can be
reinvigorated by IL-15, indicating that resistance to PD-1
therapy of CD28 deficiency is rescued by IL-15 signaling (Kim
et al., 2021). Interestingly, the DNA in exhausted CD8+ T cells is
highly methylated, indicating that genes related to effector
function are inactivated at the transcriptional level (Ghoneim
et al., 2017). Because of DNAmethylation, TI PD-1+CD8+ T cells
are resistant to PD-1 therapy (Ghoneim et al., 2017). Therefore,
targeting DNA methylation in TI CD8+ T cells is a promising
strategy to overcome resistance to PD-1 therapy.

3 CD4+FOXP3- CONVENTIONAL T CELLS
(TCONVS)

Tconvs play an important role in adaptive immune responses
(Zhu and Paul, 2008), but the role of Tconvs in the TIME is
considered insignificant in controlling tumors compared to that
of CD8+ T cells. Recently, it has been discovered that the role of TI
Tconvs is also important for antitumor immunity (Quezada et al.,
2010; Yamaguchi et al., 2018; Zappasodi et al., 2018; Nagasaki
et al., 2020; Balanca et al., 2021; Tay et al., 2021). TI Tconvs play a
fundamental role as ‘helper T cells’ that help prime CD8+ T cells
to kill tumor cells and B cells for antibody production
(Yamaguchi et al., 2018; Zappasodi et al., 2018; Balanca et al.,
2021; Tay et al., 2021). Additionally, TI Tconvs have a role as
“cytotoxic CD4+ T cells” that directly kill tumor cells in an MHC
II-dependent manner (Quezada et al., 2010; Nagasaki et al., 2020;
Tay et al., 2021). Interestingly, some TI Tconvs also express PD-1

(Yamaguchi et al., 2018; Zappasodi et al., 2018; Nagasaki et al.,
2020; Balanca et al., 2021) (Table 1).

3.1 Expression and Function
As mentioned above, PD-1 is expressed on Tconvs upon TCR
stimulation (Agata et al., 1996). The mechanism of PD-1
expression in Tconvs has not been studied as intensively as in
CD8+ T cells, but is thought to be similar to that in CD8+ T cells.
Tumor-antigen-specific Tconvs express CD39 and PD-1 (Balanca
et al., 2021). These PD-1+CD39+ Tconvs exhibit a highly
exhausted phenotype (Balanca et al., 2021). PD-1 inhibits TI
PD-1+CD39+ Tconv function (e.g., effector cytokine production
and dendritic cell (DC) maturation), thereby restraining DC-
mediated TI CD8+ T cell proliferation (Balanca et al., 2021). This
study also identifies that TI PD-1+CD39+ Tconvs express more
TOX and its target genes than TI PD-1- Tconvs (Balanca et al.,
2021). In follicular helper T cells (Tfhs), which are responsible for
priming B cells to produce neutralizing antibodies (Vinuesa et al.,
2016; Crotty, 2019), PD-1 is found to regulate Tfh localization
and function in human and mouse tumors (Shi J. et al., 2018;
Bronsert et al., 2020; Sanchez-Alonso et al., 2020). Indeed, a high
frequency of PD-1+ Tfhs correlates with poor prognosis in breast
and colorectal tumors (Gu-Trantien et al., 2013; Shi W. et al.,
2018; Bronsert et al., 2020). Intriguingly, Tfhs are also found to
directly promote TI CD8+ T cell effector function by secreting IL-
21 in colorectal tumors as well as B cell priming (Shi W. et al.,
2018). The expression of IL-21 in TI PD-1+ Tfhs is repressed by
PD-L1-expressing tumor cells (Shi W. et al., 2018). PD-1 also
represses the cytotoxic function of TI Tconvs in MHC II-
expressing tumors (Nagasaki et al., 2020; Oh et al., 2020).
Collectively, PD-1 expressed on TI Tconvs inhibits effective
antitumor immunity by suppressing the functionality of TI
Tconvs (Figure 1).

TABLE 2 | The therapeutic effects of PD-1 therapy in various immune cells.

Cell types Therapeutic effects References

CD8+

T cells
Functional restoration Bally et al. (2016), Hui et al. (2017), Kamphorst et al. (2017b), Khan et al. (2019),

Macian et al. (2001), Mathieu et al. (2013), Meng et al. (2018), Oestreich et al.
(2008), Staron et al. (2014)

Promotion of proliferation

Tconvs Restoration of cytokine secretion, DC maturation, and cytotoxicity Balanca et al. (2021), Bronsert et al. (2020), Nagasaki et al. (2020), Oh et al.
(2020), Sanchez-Alonso et al. (2020), Shi et al. (2018a), Shi et al. (2018b)Restoration of IL-21 expression in Tfhs

Tregs Amplification of Treg suppressive function Kamada et al. (2019), Kumagai et al. (2020)
Reduction of Treg populations Lim et al. (2021), Stathopoulou et al. (2018), Yoshida et al. (2020)
Inhibition of Treg suppressive function and stability

B cells Inhibition of IL-10 expression Wang et al. (2019b), Xiao et al. (2016)
Restoration of CD8+ T cell infiltration and function

NK cells Functional restoration Concha-Benavente et al. (2018), Liu et al. (2017), Quatrini et al. (2021)
ILCs Enhancement of CD103+ DC recruitment into TIME Moral et al. (2020), Taylor et al. (2017), Wang et al. (2020b)

Restoration of ILC2 function
Promotion of cytokine secretion by ILC3

TAMs Promotion of phagocytosis Dhupkar et al. (2018), Gordon et al. (2017), Kono et al. (2020), Rao et al. (2020)
Inhibition of M1 to M2 transition

DCs Restoration of cytokine secretion, costimulatory molecule expression,
antigen presentation, and CD8+ T cell function

Karyampudi et al. (2016), Krempski et al. (2011), Lamichhane et al. (2017), Lim
et al. (2016)

Inhibition of T cell activation by blocking cis interaction between PD-1 and
PD-L1

Zhao et al. (2018)

Myeloid
cells

Inhibition of MDSC generation Strauss et al. (2020)
Increase the effector myeloid cells
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3.2 Blockade Effect and Resistance to PD-1
Therapy
It has been identified that PD-1 therapy enhanced antitumor
immunity by restoring various TI Tconv functions (Table 2).
First, PD-1 therapy restores cytokine production (IFN-γ, TNF-α,
IL-2, and IL-12) from TI PD-1+CD39+ Tconv (Balanca et al.,
2021). Additionally, PD-1 therapy enhances TI PD-1+CD39+

Tconv activity, which differentiates immature DCs into mature
DCs, thereby promoting DC-mediated CD8+ T cell proliferation
(Balanca et al., 2021). In Tfhs, PD-1 therapy restores the
expression of IL-21 in TI PD-1+ Tfhs (Shi W. et al., 2018). As
mentioned above, PD-1 therapy enhances the TI CD8+ T cell
priming of TI Tfhs in an IL-21-dependent manner (Shi W. et al.,
2018). Recently, in a mouse lung tumor model, circulating Tfhs
enhance the responsiveness of PD-1 therapy by increasing the
number of tertiary lymphoid structures (Sanchez-Alonso et al.,
2020). PD-1 therapy also increases cytokine secretion by TI
cytotoxic Tconvs (Nagasaki et al., 2020; Oh et al., 2020).

In a mouse tumor model, TI PD-1+ cytotoxic Tconvs also
express LAG3 (Nagasaki et al., 2020). LAG3 binds to MHC II and
transduces inhibitory signals into CD4+ T cells (Anderson et al.,
2016). Although PD-1 therapy is effective in a mouse tumor
model, dual blockade of PD-1 and LAG3 shows a synergistic
effect (Nagasaki et al., 2020). This result suggests that PD-1
therapy alone might be insufficient to reinvigorate the
functionality of TI Tconvs and that other ICRs could induce
resistance to PD-1 therapy.

4 CD4+FOXP3+ REGULATORY T CELLS
(TREGS)

Tregs suppress immune cells and effector T cells for immune
homeostasis (Fontenot et al., 2003; Kim et al., 2007; Josefowicz
et al., 2012; Campbell, 2015). To reduce antitumor immunity,
tumor cells recruit Tregs in a chemokine-dependent manner or
provide a favorable environment for Treg proliferation
(Campbell, 2015; Son et al., 2020). Accumulated TI Tregs
largely reduce antitumor immunity by suppressing effector
T cells (Campbell, 2015; Gianchecchi and Fierabracci, 2018;
Lucca and Dominguez-Villar, 2020; Son et al., 2020).
According to recent studies, a high abundance of TI Tregs and
the high level of PD-1 expression in TI Tregs are associated with
poor prognosis in various cancer patients (Park et al., 2012;
Tanaka and Sakaguchi, 2017; Kim K. H. et al., 2019; Kumagai
et al., 2020; Lucca and Dominguez-Villar, 2020). . However, the
function of PD-1 in Tregs remains controversial (Table 1).

4.1 Expression
Similar with CD8+ and Tconvs, Tregs express PD-1 upon TCR
stimulation (Agata et al., 1996). TI PD-1+ Tregs are observed in
various cancer patients and mouse tumor model (Park et al.,
2012; Lowther et al., 2016; Kim K. H. et al., 2019; Kamada et al.,
2019; Kumagai et al., 2020; Yoshida et al., 2020). A recent study
on the TCR repertoire of TI Tregs reveals clues about how TI
Tregs express PD-1 in TIME (Ahmadzadeh et al., 2019).
Ahmadzadeh et al. reveals that TI Tregs exhibit reactivity

against tumor antigen and TCR repertoire of TI Tregs is
distinct from that of Tconvs in the blood and TIME. This
study suggests that TI Tregs are more activated and
proliferated in a tumor antigen-selective manner than TI
Tconvs, thereby leading to the high level of PD-1 expression
in TI Tregs (Ahmadzadeh et al., 2019). Recently, it has been also
identified that the expression of PD-1 in TI Tregs is induced by
SREBP signaling-induced protein geranylgeranylation (Lim et al.,
2021). Collectively, the PD-1 expression in TI Tregs is induced by
tumor antigen-specific TCR stimulation and lipid metabolism.

4.2 Function
Some groups have suggested that PD-1 represses Treg
suppressive function (Lowther et al., 2016; Kamada et al.,
2019; Kumagai et al., 2020; Tan et al., 2021). Kamada et al.
demonstrate that PD-1-deficient Tregs show high suppressive
capacity compared to PD-1-intact Tregs in amouse tumormodel.
They also suggest that hyperprogression and increased tumor
progression after PD-1 therapy in human cancer patients are
induced by enhancing Treg function. Mechanistically, PD-1
represses the functionality of TI Tregs by inhibiting the
phosphorylation of AKT and ZAP70 (Kumagai et al., 2020).
In malignant gliomas, PD-1+ Tregs do not suppress effector
T cells to the same extent as PD-1- Tregs (Lowther et al.,
2016). These PD-1+ Tregs show high levels of FoxO1
phosphorylation (Lowther et al., 2016). The level of FoxO1
phosphorylation is increased by PD-1 blockade (Lowther et al.,
2016). Taken together, these results suggest that PD-1 on TI Tregs
also inhibits TI Treg function (Figure 1). However, there are
some debates regarding these results. High levels of FoxO1
phosphorylation are required for the suppressive function of
Tregs (Kerdiles et al., 2010; Ouyang et al., 2012; Luo et al.,
2016). Inhibition of phosphorylation of AKT signaling is
required for the development of functional Tregs (Francisco
et al., 2009; Chi, 2012; Lim et al., 2021). Therefore, although
these studies suggest that PD-1 inhibits Treg function in the
TIME, PD-1 maymaintain the stability and functionality of Tregs
in the TIME.

In contrast, other studies have suggested the opposite
hypothesis that PD-1 promotes the suppressive function of
Tregs (Francisco et al., 2009; Park et al., 2012; Park et al.,
2015; Asano et al., 2017; Stathopoulou et al., 2018; Kim K. H.
et al., 2019; Dong et al., 2020; Yoshida et al., 2020; Lim et al.,
2021). PD-1 regulates Treg homeostasis by promoting
proliferation and inhibiting apoptosis during low-dose IL-2
therapy (Asano et al., 2017). Additionally, PD-1 is found to
maintain Foxp3 expression by inhibiting asparaginyl
endopeptidase (AEP) (Stathopoulou et al., 2018). Because
Foxp3 is responsible for the suppressive function of Tregs, this
hypothesis suggests that PD-1 enhances the functionality of Tregs
by maintaining the expression of Foxp3 (Stathopoulou et al.,
2018). Lipid metabolism in Treg cells is crucial for the
maintenance and functionality of TI Tregs (Wang S. et al.,
2020; Lim et al., 2021). Interestingly, PD-1 is associated with
the lipid metabolism of TI Tregs (Patsoukis et al., 2015; Lim et al.,
2021). Lim et al. identify that SREBP signaling is crucial for TI
Treg suppressive capacity by upregulating PD-1. Mechanistically,
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SREBP and PD-1 signaling inhibit the activation of PI3K in TI
Tregs, thereby amplifying the suppressive functionality of TI
Tregs (Lim et al., 2021). These studies suggest that PD-1
enhances the suppressive function of TI Treg cells (Figure 1).
Taken together, the exact function of TI Tregs remains elusive.
Therefore, further studies to identify the context-dependent
function of TI Tregs would be helpful to understand how PD-
1+ TI Tregs affect PD-1 therapy.

4.3 Blockade Effect
Because the function of PD-1 in Tregs has not been defined
precisely, the therapeutic effect of PD-1 therapy on Tregs is also
controversial (Table 2). Kamada et al. demonstrate that PD-1
therapy enhances the suppressive functionality of TI Tregs in
human and mouse models. Kumagai et al. identify that the
balance in PD-1 expression between TI CD8+ T cells and
TITregs is crucial for predicting the responsiveness of PD-1
therapy. This study suggests that the preferential consumption
of anti-PD-1 antibodies would enhance or reduce antitumor
immunity (Kumagai et al., 2020). In contrast, several studies
have shown that PD-1 therapy reduces the suppressive function
of TI Tregs and enhances antitumor immunity (Stathopoulou
et al., 2018; Kim K. H. et al., 2019; Yoshida et al., 2020; Lim et al.,
2021). Yoshida et al. demonstrate that PD-1 therapy reduces the
frequency of TI Tregs in human and mouse osteosarcoma.
Additionally, H. R. Kim et al. show that PD-1 therapy
restrains the functionality of TI Tregs in human and mouse
lung cancer. In this regard, PD-1 therapy still enhances antitumor
immunity by repressing the functionality and stability of TI
Tregs.

4.4 Resistance to PD-1 Therapy
Similar to other CD8+ T cells and Tconvs, Tregs express other
ICRs in the TIME (Wing et al., 2008; Sakuishi et al., 2013;
Kurtulus et al., 2015). In Tregs, other ICRs (e.g., CTLA4,
TIGIT, and TIM3) are responsible for maintaining the stability
and functionality of TI Tregs (Wing et al., 2008; Sakuishi et al.,
2013; Kurtulus et al., 2015; Sato et al., 2021). Therefore, there is a
possibility that other ICRs still act on the maintenance of Treg
stability and functionality in PD-1-blocked TI Tregs, thereby
inducing resistance to PD-1 therapy. Several groups, insisting that
PD-1 inhibits the suppressive function of TI Tregs, suggest that
resistance to PD-1 therapy is induced when PD-1 therapy
preferentially acts on TI Tregs rather than TI CD8+ T cells
(Kamada et al., 2019; Kumagai et al., 2020). As mentioned
above, because the function of TI Tregs is controversial,
resistance to PD-1 therapy induced by PD-1+ TI Tregs needs
to be further explored.

5 B CELLS

It has been shown that TI B cells are associated with
responsiveness to PD-1 therapy (Xiao et al., 2016; Guo and
Cui, 2019). The role of TI B cells is debatable. Some TI B cells
enhance antitumor immunity by producing tumor-specific
antibodies, presenting tumor-specific antigens, and secreting

cytokines (IFN-γ, TNF-α, and IL-12) (Guo and Cui, 2019). In
contrast, other TI B cells, also known as regulatory B cells (Bregs),
reduce antitumor immunity by secreting cytokines (IL-10, TGFβ,
and IL-35) (Guo and Cui, 2019). The TI B cells express PD-1
(Table 1).

5.1 Expression
PD-1 expression in B cells is induced by various factors (Xiao
et al., 2016). Using human B cells from healthy blood donors, it
is demonstrated that HCC tumor cell culture supernatants
increase the number of PD-1+ B cells, while normal liver cell
culture supernatants do not (Xiao et al., 2016). This result
indicates that some factors in tumor cell culture supernatants
have the potential to induce PD-1 expression in B cells. Further
investigations reveal that CD40 signaling also induces PD-1
expression in B cells (Xiao et al., 2016). BCL6 is upregulated in
PD-1+ B cells and related to PD-1 expression (Xiao et al., 2016).
Using inhibitors of various signaling pathways, JNK, p38, and
NF-κB contribute to the induction of PD-1 expression by
upregulating BCL6 expression (Xiao et al., 2016). Several
cytokines (including IL-1β, IL-6, and IL-10) do not induce
PD-1 expression (Xiao et al., 2016). Notably, IL-4 represses
CD40 signaling-dependent PD-1 expression in B cells (Xiao
et al., 2016). Additionally, phosphorylation of STAT6 is linked
to IL-4 stimulation and is repressed in PD-1+ B cells. (Xiao et al.,
2016).

5.2 Function
PD-1 induces immunosuppressive IL-10 expression in TI B cells
from patients with HCC (Xiao et al., 2016). In conventional
B cells, the TLR4 agonist, CD40 signaling, and anti-IgM addition
can induce IL-10 expression (Xiao et al., 2016). However, in TI
B cells, these factors do not induce IL-10 expression, and only
PD-1 signaling can induce IL-10 expression (Xiao et al., 2016). IL-
10 secreted by TI PD-1+ T cells consequently suppresses CD8+

T cell infiltration and function, thereby inhibiting effective
antitumor immunity (Xiao et al., 2016). Furthermore, in a
mouse HCC model, anti-IL-10R administration delays tumor
growth by reinvigorating CD8+ T cell infiltration and function to
a similar extent as anti-PD-L1 administration (Xiao et al., 2016).
This result suggest that PD-1 expressed on TI B cells mediates
T cell suppression and results in rapid tumor growth. However, in
patients with differentiated thyroid cancer, PD-1 signaling do not
induce IL-10 expression in TI B cells (Wang et al., 2019b). This
result indicates that PD-1 function in TI B cells can be context-
dependent. This study identifies that TI PD-1+ B cells result in
impairment of T cell proliferation in a PD-L1-dependent manner
(Wang et al., 2019b), which suggests that TI PD-1+ B cells control
antitumor immunity by directly suppressing T cell proliferation.
Taken together, although PD-1 function in TI B cells is context-
dependent, TI PD-1+ B cells mediate T cell suppression and
induce rapid tumor growth (Figure 1).

5.3 Blockade Effect
PD-1 therapy represses IL-10 expression in TI B cells from
patients with HCC, suggesting that PD-1 therapy can enhance
antitumor immunity by impairing the TI PD-1+ B cell
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suppressive capacity (Xiao et al., 2016) (Table 2). Using a mouse
hepatoma model, PD-1 therapy delays tumor growth by
recovering CD8+ T cell infiltration and function in a TI PD-
1+ B cell-dependent manner (Xiao et al., 2016) (Table 2).
Additionally, Wang et al. demonstrate that PD-1 therapy
increases T cell viability (Wang et al., 2019b) (Table 2).
However, this result is limited as this effect is observed only
in vitro, and there is no in vivo evidence. Therefore, further
studies on the direct and in vivo effects of PD-1 therapy on TI
PD-1+ B cells are needed.

6 NATURAL KILLER CELLS

NK cells play a critical role in antitumor immunity by directly
killing tumor cells such as CD8+ T cells (Shimasaki et al., 2020).
Tumor cells downregulate MHC on their surface to escape
recognition by CD8+ T cells (Shimasaki et al., 2020). However,
NK cells recognize MHC deficiency in tumor cells and kill MHC-
deficient tumor cells in a cytokine-dependent manner. TI NK
cells also express PD-1, and TI PD-1+ NK cells are suppressed by
the engagement of PD-L1 expressed on tumor cells or other
immune cells (Zhang and Liu, 2020) (Table 1).

6.1 Expression
Recently, glucocorticoids (GCs) and various cytokines (including
IL-12, IL-15, and IL-18) induce the expression of PD-1 in TI NK
cells (Quatrini et al., 2021). GCs are steroid hormones that have
an immunosuppressive effect. As the GC receptor is expressed on
every cell type, NK cells are also affected by the immune-
suppressive effect of GCs. One of the immunosuppressive
effects of GCs is the induction of PD-1 expression on NK cells
(Quatrini et al., 2021). These factors preferentially affect
CD56bright NK cells and induce PD-1 expression (Quatrini
et al., 2021). Mechanistically, in CD56bright NK cells, GCs
upregulate the expression of PD-1 by promoting a
transcriptional program related to translation (Quatrini et al.,
2021). In patients with head and neck cancer, cetuximab (anti-
EGFR) treatment induces NK cell activation, thereby increasing
the frequency of PD-1+ NK cells (Concha-Benavente et al., 2018).
These results suggest that NK cells would express PD-1 during
activation. The specific mechanism of PD-1 expression in NK
cells needs to be further elucidated.

6.2 Function
In various tumor types, TI PD-1+ NK cells exhibit less functional
phenotypes (Liu et al., 2017; Concha-Benavente et al., 2018; Vari
et al., 2018; Yin et al., 2018; Trefny et al., 2020). Liu et al.
demonstrate that PD-1 regulates NK cell function by
suppressing the activation of PI3K/AKT signaling in NK
cells. Additionally, PD-1+ NK cells exhibit impaired
cytotoxicity against PD-L1-expressing tumor cells (Quatrini
et al., 2021). In patients with head and neck cancer,
cetuximab-activated PD-1+ NK cells are functionally
repressed by PD-L1-expressing tumor cells (Concha-
Benavente et al., 2018). Taken together, PD-1 suppresses the
effector function of NK cells (Figure 1).

6.3 Blockade Effect
TI PD-1+ NK cells can be reinvigorated by PD-1 therapy
(Concha-Benavente et al., 2018; Trefny et al., 2020; Vari et al.,
2018) (Table 2). In Hodgkin lymphoma, PD-
1+CD3−CD56hiCD16negative NK cells are repressed by PD-L1-
expressing monocytes (Vari et al., 2018). These PD-
1+CD3−CD56hiCD16negative NK cells are reinvigorated by
depletion of PD-L1-expressing monocytes or PD-1 therapy
(Vari et al., 2018). In patients with head and neck cancer, PD-
1 therapy enhances the functionality of cetuximab-activated PD-
1+NK cells by inhibiting interactions with PD-L1-expressing
tumor cells (Concha-Benavente et al., 2018). Collectively, in
various tumor types, PD-1 therapy enhances antitumor
immunity by reinvigorating NK cell function.

6.4 Resistance to PD-1 Therapy
Similar to T cells, TI PD-1+ NK cells express other ICRs (Seo et al.,
2018; Yin et al., 2018; Zhang et al., 2018). Although PD-1 therapy
blocks the interaction between PD-1 and PD-L1, other ICRs on
TI NK cells suppress the functionality of TI NK cells. Multiple
expression of ICRs in NK cells results in resistance to PD-1
therapy. Therefore, blocking multiple ICRs effectively restores the
functionality of TI NK cells, thereby overcoming resistance to
PD-1 therapy (Seo et al., 2018; Yin et al., 2018; Zhang et al., 2018).
Seo et al. demonstrate that intratumoral administration of IL-21
enhances the efficacy of PD-1/TIM3 therapy by recruiting NK
cells into the TIME in a CXCR3-dependent manner. They also
demonstrate that IL-21 cytokine therapy have a synergistic effect
with PD-1/TIM3 therapy in human andmouse tumors (Seo et al.,
2018). In particular, in various human cancer patient samples
(including colon cancer, bladder cancer, and melanoma), a
combination of IL-21 administration and PD-1/TIM3 therapy
reinvigorate the functionality of PD-1+TIM3+ NK cells and
overcome resistance to PD-1/TIM3 therapy (Seo et al., 2018).
Therefore, IL-21 administration can be a good target for
overcoming resistance to NK cell-dependent PD-1 therapy.

7 INNATE LYMPHOID CELLS

ILCs are derived from common lymphoid progenitors and are
mostly found in tissues (Vivier et al., 2018). ILCs are responsible
for remodeling and repairing tissues, lymphoid organogenesis,
and innate immune responses against pathogens and tumors
(Vivier et al., 2018; Mariotti et al., 2019). ILCs are classified as
ILC1, ILC2, and ILC3 (Vivier et al., 2018; Mariotti et al., 2019).
ILC1, ILC2, and ILC3 are similar to CD4+ T helper (Th) 1, Th2,
and Th17 cells, respectively (Vivier et al., 2018; Pesce et al., 2020).
ILCs also express PD-1. It has been identified that PD-1 on ILCs
plays a distinct role in regulating antitumor immunity (Mallett
et al., 2019) (Table 1).

7.1 Expression
PD-1 expression in ILC1 has not yet been found. In a mouse
model, it is first found that PD-1 is expressed in KLRG1+ILC2
(Taylor et al., 2017). In KLRG1+ILC2, PD-1 expression is induced
through stimulation with IL-2, IL-7, and IL-33 (Taylor et al.,
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2017). Because this study does not use a mouse tumor model, we
do not identify whether PD-1 regulation in ILC2 is also observed
in mouse tumor tissues. Recently, in patients with human
colorectal and pancreatic cancer, ILC2 expresses PD-1 (Wang
H. et al., 2020; Moral et al., 2020). Mechanistically, IL-33/ST2
signaling induces PD-1 expression in TI ILC2 (Moral et al., 2020).
In pleural effusions of various patients with cancer
(mesothelioma and adenocarcinoma), PD-1 is also expressed
in ILC3 (Tumino et al., 2019). However, the mechanism by
which PD-1 expression in ILC3 is induced is yet to be
identified (Tumino et al., 2019). Therefore, PD-1 expression in
ILC1 and the specific mechanism of PD-1 expression in ILC3
need to be investigated for effective PD-1 therapy.

7.2 Function
TI ILC2 enhances antitumor immunity indirectly (Moral et al.,
2020). Recombinant IL-33 (rIL-33)-activated TI ILC2 secretes
CCL5, which recruits CD103+ dendritic cells (DCs) (Moral et al.,
2020). Because CD103+ DCs are responsible for activating CD8+

T cells, rIL-33-activated TI ILC2 enhances antitumor immunity
by inducing CD103+ DC-mediated TI CD8+ T cell activation
(Moral et al., 2020). Additionally, rIL-33-activated TI ILC2
expresses PD-1 (Moral et al., 2020). In fact, adoptive transfer
of rIL-33-activated TI PD-1+ ILC2 into ILC2-deficient mice
controls tumor progression, indicating that rIL-33-activated TI
PD-1+ ILC2 is functional and enhances antitumor immunity
(Moral et al., 2020). Notably, adoptive transfer of rIL-33-activated
TI PD-1−/− ILC2 into ILC2-deficient mice enhances antitumor
immunity more than that of rIL-33-activated TI PD-1+ ICL2 into
ILC2-deficient mice, suggesting that PD-1 signaling restrains the
optimal functionality of rIL-33-activated TI ILC2 (Moral et al.,
2020). They also demonstrate that blocking PD-1 on TI ILC2
enhances antitumor immunity in an rIL-33-activated TI ILC2-
transferred mouse tumor model (Moral et al., 2020). This result
indicates that PD-1 signaling suppresses the functionality of TI
ILC2. However, they do not show whether blocking PD-1 on TI
ILC2 affects CCL5 expression in TI ILC2. Therefore, further
studies on the direct relationship between CCL5 expression and
PD-1 signaling in TI ILC2 are required. In ILC3, PD-1 inhibits
cytokine production (IFN-γ and TNF-α) (Tumino et al., 2019).
Collectively, PD-1 reduces antitumor immunity by inhibiting the
ILC effector function (Figure 1).

7.3 Blockade Effect
Because PD-1 signaling suppresses the functionality of TI ILC2,
ablation or blockade of PD-1 on TI ILC2 resultes in improved
functionality of TI ILC2 and enhances antitumor immunity in a
mouse pancreatic tumor model (Moral et al., 2020) (Table 2). As
mentioned above, although TI ILC2 enhances antitumor
immunity by recruiting CD103+ DCs in a CCL5-dependent
manner (Moral et al., 2020), it is still unclear whether PD-1
therapy affects the expression of CCL5 in TI ILC2. Nevertheless,
the combination of PD-1 therapy and rIL-33 treatment effectively
controls tumor progression by inducing TI ILC2-dependent
CD103+ DC migration into the TIME (Moral et al., 2020). In
TI ILC3, PD-1 therapy enhances antitumor immunity by
inducing cytokine secretion (IFN-γ and TNF-α) by TI ILC3

(Tumino et al., 2019) (Table 2). Taken together, PD-1 therapy
enhances antitumor immunity by augmenting the functionality
of TI ILCs.

7.4 Resistance to PD-1 Therapy
PD-1 therapy alone is not sufficient to enhance antitumor
immunity in a mouse pancreatic tumor model (Moral et al.,
2020). The combination of PD-1 therapy and rIL-33
administration enhances antitumor immunity in an ILC2-
dependent manner (Moral et al., 2020). This result indicates
that PD-1 therapy is dependent on the activation state of TI ILC2
in a mouse pancreatic tumor model and that TI IL2 activation by
IL-33 signaling can overcome resistance to PD-1 therapy (Moral
et al., 2020). Meanwhile, resistance to PD-1 therapy triggered by
PD-1+ ILC3 is poorly understood.

8 TUMOR-ASSOCIATED MACROPHAGES

There are two types of TAMs: pro-inflammatory M1 and anti-
inflammatory M2 TAMs (Noy and Pollard, 2014; Roszer, 2015).
Pro-inflammatory M1 TAMs promote phagocytosis of tumor
cells and anti-inflammatory M2 TAMs secrete
immunosuppressive cytokines (e.g., IL-10, IL-6, and TGFβ)
(Noy and Pollard, 2014; Roszer, 2015; Gordon et al., 2017).
These TAMs also express PD-1 (Table 1).

8.1 Expression
Macrophages express PD-1 in response to type I interferon (IFN)
(Cho et al., 2008). Unlike PD-1 on T cells, PD-1 on macrophages
is induced by the transcription factor nuclear factor-kappa B (NF-
κB) upon TLR2/4 stimulation, but not byMAP kinase (Bally et al.,
2015). PD-1 is also expressed in both human and mouse TAMs
(Cho et al., 2008; Bally et al., 2015; Gordon et al., 2017). However,
the mechanism of tumor-specific PD-1 expression is unclear.
Two different groups recently reveal the mechanism by which
PD-1 expression is regulated in TAMs (Lyle et al., 2019; Tartey
et al., 2021). Lyle et al. explain that PD-1 in TAMs is
downregulated by casitas B lymphoma (c-Cbl) E3 ubiquitin
ligase in colorectal cancer. TAMs of c-Cbl knockout (c-Cbl+/-)
mice express more PD-1 than those of wild type mice and exhibit
a reduction in phagocytosis (Lyle et al., 2019). Mechanistically,
c-Cbl binds to the cytosolic tail of PD-1 and downregulates PD-1
by ubiquitination-proteasomal degradation (Lyle et al., 2019).
Another group demonstrates that the MyD88/IL1 receptor
(IL1R) axis plays an important role in regulating the
expression of PD-1 in TAMs (Tartey et al., 2021). The
MyD88/IL1R axis in TAM recruits transcription factor nuclear
factor-kappa B (NF-κB) on the PD-1 promoter, thereby
upregulating the expression of PD-1 on TAMs (Tartey et al.,
2021).

8.2 Function
PD-1 expressed on M1 TAMs reduces antitumor immunity by
inhibiting phagocytosis (Gordon et al., 2017; Kono et al., 2020).
Additionally, PD-1 induces the M1 to M2 transition (Gordon
et al., 2017; Dhupkar et al., 2018; Rao et al., 2020). PD-1 is also
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involved in the differentiation of TAMs (Gok Yavuz et al., 2019).
Cancer-associated fibroblasts (CAFs) resident in the TIME
recruit monocytes by monocyte chemotactic protein-1 (MCP-
1) and stromal cell-derived factor-1 (SDF-1) (Gok Yavuz et al.,
2019). The recruited monocytes are differentiated into M2 TAMs
by CAFs and express more PD-1 than the normal fibroblast (NF)-
educated monocytes (Gok Yavuz et al., 2019). These CAF-
educated monocytes exhibit a more suppressive phenotype on
the PD-1 axis than NF-educated monocytes (Gok Yavuz et al.,
2019). Tissue samples from human breast cancer patients show
that a higher frequency of CAFs is related to the abundance of
TAMs (Gok Yavuz et al., 2019). Collectively, PD-1 is involved in
suppressing the phagocytosis of M1 TAMs and inducing the
differentiation of M2 TAMs (Figure 1).

8.3 Blockade Effect
The abundance of PD-1-expressing TAMs correlates with poor
prognosis in human cancer patients (Chen et al., 2020; Gordon
et al., 2017; Kono et al., 2020). In a mouse model, PD-1 therapy
reduces tumor growth (Gordon et al., 2017) (Table 2). This effect
is abolished by TAM depletion, indicating that PD-1 therapy
enhances antitumor immunity by amplifying TAM phagocytosis
(Gordon et al., 2017) (Table 2). In patients with osteosarcoma,
PD-1 therapy inhibits M1 to M2 transition and increases the
frequency of M1 TAMs, thereby enhancing antitumor immunity
(Dhupkar et al., 2018) (Table 2). This effect has also been
observed in patients with glioblastoma (Rao et al., 2020). This
study confirms the TAM-mediated PD-1 therapy effect by
capitalizing on CD8+ T cell-deficient mice (Rao et al., 2020).

9 DENDRITIC CELLS

DCs are professional antigen-presenting cells that are responsible
for priming and activating T cells (Wculek et al., 2020). In the
TIME, the tumor-antigen uptake ability of DCs is important for
the expansion of tumor-antigen-specific T cells (Wculek et al.,
2020). Tumor cells inhibit DC migration into the TIME by
secreting CCL4 (Spranger et al., 2015). Inhibition of DC
infiltration promotes tumor progression by deteriorating T cell
priming (Spranger et al., 2015; Salmon et al., 2016). DCs usually
express PD-L1 (Salmon et al., 2016; Wculek et al., 2020). PD-L1+

DCs show reduced T cell priming ability, and PD-L1 blockade
increases T cell priming (Salmon et al., 2016). A high frequency of
PD-L1+ DCs in the TIME is associated with a poor prognosis in
human cancer patients (Mu et al., 2011; Wculek et al., 2020).
Interestingly, DCs are found to express both PD-1 and PD-L1
(Table 1).

9.1 Expression
The mechanism of PD-1 expression in DCs has not yet been
elucidated. In a mouse ovarian tumor model, PD-1 expression on
TI DCs is demonstrated to be regulated by IL-10 cytokine
(Lamichhane et al., 2017). Mechanistically, IL-10 treatment of
mouse bone marrow-derived DCs (BMDCs) induces PD-1
expression in a STAT3-dependent manner (Lamichhane et al.,
2017). Except for IL-10, other mechanisms of PD-1 expression in

TI-DCs remain elusive. Further studies are needed to identify the
mechanism of PD-1 expression in TI-DCs.

9.2 Function
PD-1 expressed on DCs is associated with immune suppression
(Krempski et al., 2011; Karyampudi et al., 2016; Lim et al., 2016;
Lamichhane et al., 2017; Zhao et al., 2018). In human and mouse
hepatocellular carcinoma, PD-1-expressing CD11c+ TI DCs have
been identified and have the suppressive capacity to repress CD8+

T cell function (Lim et al., 2016). This study demonstrates that
PD-1-deficient DCs are defective in suppressing CD8+ T cell
function, thereby enhancing antitumor immunity (Lim et al.,
2016). In a mouse ovarian tumor model, PD-1+ DCs accumulate
in the TIME and suppress T cell function and infiltration
(Krempski et al., 2011; Karyampudi et al., 2016; Lamichhane
et al., 2017). PD-1 on TI DCs from human ovarian cancer patients
and mouse tumor tissues suppresses cytokine production (TNF-α
and IL-6) and costimulatory molecule expression (CD40 and
CD80) (Karyampudi et al., 2016). Mechanistically, PD-1 mainly
regulates the NF-κB pathway (Krempski et al., 2011; Karyampudi
et al., 2016). PD-1 represses cytokine secretion and costimulatory
molecule expression in TI DCs by preventing IκBα degradation,
indicating that maintenance of IκBα restricts NF-κB subunit p65
into the cytosol (Karyampudi et al., 2016). Furthermore, PD-1
also retrains antigen presentation and MHC I expression of TI
DCs in an NF-κB-dependent manner (2016 Cancer research).
Notably, PD-1 on DCs interacts with PD-L1 expressed on
themselves (Zhao et al., 2018). This cis interaction leads to the
PD-L1 blocking effect of DC itself, inducing T cell activation
(Zhao et al., 2018). This result is in contrast to the already known
suppressive function of PD-1 on DCs. However, the in vivo role of
the cis interaction between PD-1 and PD-L1 on DCs has not been
identified (Zhao et al., 2018). Therefore, it needs to be determined
whether this cis function of PD-1 in DCs works in a mouse tumor
model. Collectively, except for the cis function of PD-1 in DCs,
PD-1 mainly controls various DC characteristics (e.g., cytokine
secretion, antigen presentation, costimulatory molecule
expression, and MHC I expression) (Figure 1).

9.3 Blockade Effect
PD-1 therapy increases DC function and enhances T cell immunity
(Karyampudi et al., 2016; Krempski et al., 2011; Lamichhane et al.,
2017) (Table 2). Cytokine secretion, costimulatory molecule
expression, antigen presentation, and MHC I expression in TI
DCs are increased by PD-1 therapy, indicating that PD-1 therapy
enhances antitumor immunity by restoring DC function and DC-
mediated T cell activation (Krempski et al., 2011; Karyampudi et al.,
2016). Mechanistically, PD-1 therapy-induced translocation of the
NF-κB subunit p65 into the nucleus activates the NF-κB target genes
by degrading IκBα in TI DCs (Karyampudi et al., 2016).
Interestingly, PD-1 therapy increases IL-10 expression in TI-DCs
(Lamichhane et al., 2017). As mentioned above, because IL-10
induces PD-1 expression on TI DCs, PD-1 blocking and IL-10
expression form a feedback loop (Lamichhane et al., 2017). This
result suggest that this feedback loop in TI DCs maintains a
suppressive environment and consequently results in resistance to
PD-1 therapy (Lamichhane et al., 2017). Additionally, PD-1 therapy
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can inhibit T cell activation by preventing cis interactions with PD-
L1 expressed on DCs (Zhao et al., 2018). However, the in vivo role of
the cis interactions has not been verified (Zhao et al., 2018).

9.4 Resistance to PD-1 Therapy
As mentioned above, IL-10 expression in TI-DCs is induced by
PD-1 therapy (Lamichhane et al., 2017). Consequently, increased
IL-10 expression by PD-1 therapy maintains suppressive TIME,
inducing resistance to PD-1 therapy (Lamichhane et al., 2017).
Therefore, a combination therapy of PD-1 therapy and IL-10
neutralization makes resistant tumors sensitive to PD-1 therapy
in a mouse ovarian tumor model (Lamichhane et al., 2017). This
result suggests that DC-dependent resistance to PD-1 therapy can
be overcome by IL-10 neutralization.

10 MYELOID CELLS

10.1 Expression
TI myeloid cells express PD-1 (Strauss et al., 2020) (Table 1).
Among myeloid cells, PD-1 on granulocyte/macrophage
progenitors (GMPs) plays an important role in regulating
their differentiation into myeloid-derived suppressive cells
(MDSCs) during emergency myelopoiesis, which is the
cellular proliferation induced by immunologic stress
(Strauss et al., 2020). GMPs slightly express PD-1 in the
naïve state and the expression of PD-1 is induced in the
context of the tumor or in response to several factors such
as granulocyte colony-stimulating factor (G-CSF),
granulocyte-macrophage colony growth factor (GM-CSF),
and TLR4 agonist (Strauss et al., 2020).

10.2 Function
Specific ablation of PD-1 on myeloid cells reduces the
populations of GMPs and MDSCs and increases the
population of effector immune cells, thereby enhancing
antitumor immunity (Strauss et al., 2020). The functionality of
T cells cocultured with PD-1-deficient myeloid cells is enhanced
compared to that cocultured with PD-1-intact myeloid cells,
indicating that PD-1-deficient myeloid cells are less
suppressive than the PD-1-intact myeloid cells (Strauss et al.,
2020). Mechanistically, PD-1-deficient GMPs increase the
activation of ERK1/2, mTORC1, and STAT1 during
emergency myelopoiesis (Strauss et al., 2020). Inactivation of
these signaling pathways is crucial for MDSC generation.
Therefore, PD-1 signaling is responsible for MDSC generation
by inhibiting the activation of ERK1/2, mTORC1, and STAT1
signaling (Strauss et al., 2020). PD-1 also regulates the
metabolism of myeloid cells (Strauss et al., 2020). PD-1-
deficient GMPs increase the metabolites of glycolysis, pentose
phosphate pathway, and TCA cycle compared to PD-1-intact
GMPs (Strauss et al., 2020). Notably, PD-1-deficient GMPs show
enhanced cholesterol synthesis (Strauss et al., 2020). Since
cholesterol synthesis is responsible for the differentiation of
pro-inflammatory myeloid cells, PD-1 signaling in GMPs is
crucial for accumulating MDSCs by repressing cholesterol
synthesis (Strauss et al., 2020) (Figure 1).

10.3 Blockade Effect
This study demonstrate that PD-1 therapy enhanced antitumor
immunity by inhibiting the generation of MDSCs from GMPs
and increasing the effector myeloid cells in immunocompromised
mice (Rag2−/−) (Strauss et al., 2020) (Table 2). Additionally,
because PD-1 on myeloid cells is expressed in the early phase
during tumor-mediated emergency myelopoiesis, PD-1 therapy
for early-stage tumors will be optimal to enhance antitumor
immunity in a myeloid-dependent manner (Strauss et al.,
2020). Because PD-1 expressed on myeloid cells is recently
identified, the myeloid cell-dependent PD-1 therapy effect is
still poorly understood. Therefore, further identification of
PD-1 function in myeloid cells will help to understand the
mechanism of PD-1 therapy.

11 TUMOR CELLS

Tumor cells usually express PD-L1 on their surface and tumor-
expressing PD-L1 has been known to be a representative biomarker
to predict a response to PD-1 blockade (Lee et al., 2020). However,
immunohistochemical detection of PD-L1 from tumor biopsy
samples does not often reflect the entire characteristics of TIME
due to its heterogeneity (Guibert et al., 2018). Since circulating tumor
cells (CTCs), which are disseminated cancer cells in circulation, are
easily obtained from the blood without surgery (Guibert et al., 2018;
Bergmann et al., 2020; Winograd et al., 2020) and reflect the
characteristics of TIME better than a biopsy (Lin et al., 2018),
CTCs is gradually attracting attention as a real-time biomarker in
various cancer patients with metastatic and therapy-resistant disease
(Mazel et al., 2015; Kloten et al., 2019; Bergmann et al., 2020; Liu
et al., 2020; Winograd et al., 2020). Actually, PD-L1 expression on
CTCs are associated with poor prognosis in various cancer patients
(Mazel et al., 2015; Kloten et al., 2019; Bergmann et al., 2020; Liu
et al., 2020; Winograd et al., 2020). Therefore, additional studies on
PD-L1 expression in CTCs and its possibility to predict anti-PD-1
therapy response would be needed.

Of interest, it has been reported that various types of cancer
cells occasionally express PD-1, even though the underlying
mechanism and function of tumor cell-expressing PD-1 have
not been clearly studied.

11.1 Expression
PD-1 is expressed not only in immune cells, but also in tumor
cells. However, the mechanism of PD-1 expression in tumor cells
remains controversial (Table 3).

11.2 Function
The function of tumor cell-intrinsic PD-1 is controversial. In this
review, we introduce both the oncogenic and tumor-suppressive
functions of PD-1 in tumor cells (Figure 1). Several groups have
suggested that PD-1 enhances tumor growth (Schatton et al., 2010;
Kleffel et al., 2015; Li et al., 2017; Pu et al., 2019). They demonstrate
that PD-1 expressed on tumor cells increases the level of
phosphorylation of S6 (pS6), mTOR effector molecules, and
eukaryotic initiation factor 4E (eIF4E), which are responsible for
cellular proliferation (Schatton et al., 2010; Kleffel et al., 2015; Li et al.,
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2017). Mutations in the immunoreceptor tyrosine-based inhibitory
motif (ITIM, Y225F) and the immunoreceptor tyrosine-based
switch motif (ITSM, Y248F) in the cytosolic tail of PD-1
expressed on melanoma cells decrease tumor growth, indicating
that these ITIM and ITSM in PD-1 have an important role in
regulating tumor cell-intrinsic PD-1-mediated tumorigenesis
(Kleffel et al., 2015). Analysis of biopsies from human patients
with advanced-stage melanoma who received PD-1 therapy reveal
that reduced pS6 in tumor cells after PD-1 therapy positively
correlates with responsiveness to PD-1 therapy and enhances
overall survival (Kleffel et al., 2015). Additionally, PD-1 in tumor
cells activates the Hippo pathway (specifically AYR61/CTGF),
thereby enhancing tumor cell proliferation (Pu et al., 2019).

However, in lung tumors, other groups have suggested that
PD-1 expressed on tumor cells inhibits their proliferation and
that PD-1 blockade enhances tumor growth by activating AKT
and ERK1/2 (Du et al., 2018; Wang X. et al., 2020). They
demonstrate that the knockdown of PD-1 in lung tumor cells
increases cell proliferation by upregulating the phosphorylation
levels of AKT and ERK1/2, but not S6 (Du et al., 2018; Wang X.
et al., 2020). In this study, the mutations of ITIM and ITSM,
which is completely identical to the mutation mentioned above,
result in the enhancement of tumor cell proliferation by activating
AKT and ERK signaling (Wang X. et al., 2020). Additionally, this
study demonstrates that SHP2 is not responsible for the function
of PD-1 in tumor cells, unlike T cells (Wang X. et al., 2020).

11.3 Blockade Effect and Resistance to
PD-1 Therapy
Because the function of PD-1 in tumor cells is also controversial,
as in Tregs, the effect of tumor cell-specific PD-1 therapy is also

elusive (Table 4). In the light of the oncogenic function of PD-1,
PD-1 therapy is effective in delaying tumor growth in
immunocompromised mice (Kleffel et al., 2015; Li et al., 2017;
Pu et al., 2019). This result indicates that PD-1 therapy can
directly affect tumor cells by suppressing their proliferation. In
contrast, in the light of the tumor-suppressive function of PD-1,
PD-1 therapy increases tumor progression in
immunocompromised mice (Wang X. et al., 2020). According
to these results, PD-1-expressing tumor cells can induce
resistance to PD-1 therapy.

Several groups have argued that PD-1 is expressed in tumor
cells. Because the characteristics of tumor cells are heterogeneous
and determined by their origin, the function of PD-1 expressed
on tumor cells can differ depending on the tumor type. Therefore,
it is necessary to further identify the distinct functions of PD-1
depending on the tumor type.

12 Perspectives
PD-1 therapy is effective in reinvigorating the functionality of CD8+

T cells, thereby enhancing antitumor immunity (McLane et al.,
2019). However, about 70% of cancer patients fail to respond to PD-
1 therapy (Emens et al., 2017). Various clinical trials and studies have
been conducted to improve the responsiveness to PD-1 therapy by
identifying the characteristics of PD-1+CD8+ T cells (Kamphorst
et al., 2017b; Kim H. R. et al., 2019; Khan et al., 2019). Interestingly,
the expression, function, and therapeutic effect of PD-1 in other
immune and tumor cells have been recently reported. The overall
understanding of PD-1 expressed on various immune cells and
tumor cells will be important for elucidating the mechanisms of PD-
1 therapy. In this review, we introduced various PD-1 functions in TI
immune cells. Given that PD-1 largely inhibits effector functions that
delay tumor growth and kill tumor cells, PD-1 therapy mainly

TABLE 3 | PD-1 expressed on tumor cells.

Cancer type Tumor cell-intrinsic PD-1
function

Mechanism References

Melanoma PD-1 promoted tumor
growth

PD-1 increased the level of phosphorylation of S6, mTOR components, and
eIF4E

Kleffel et al. (2015), Schatton et al.
(2010)

Hepatoma PD-1 increased the level of phosphorylation of S6, mTOR components, and
eIF4E

Li et al. (2017)

Pancreatic
cancer

PD-1 activated the hippo pathway and increased the expression of CYR61 and
CTGF.

Pu et al. (2019)

NSCLC PD-1 inhibited tumor
growth

Mechanism was not specified Du et al. (2018)
Lung cancer PD-1 inhibited the activation of AKT and ERK signaling Wang et al. (2020c)

mTOR, mammalian target of rapamycin; eIF4E, eukaryotic initiation factor 4E; CYR61, cysteine-rich angiogenic inducer 61; CTGF, connective tissue growth factor; NSCLC, non-small-cell
lung carcinoma; ERK, extracellular signal-regulated kinase.

TABLE 4 | The therapeutic effects of PD-1 therapy in tumor cells.

Cancer type Therapeutic effects References

Melanoma Inhibition of tumor growth Kleffel et al. (2015), Schatton et al. (2010)
Hepatoma Li et al. (2017)
Pancreatic cancer Pu et al. (2019)
NSCLC Promotion of tumor growth Du et al. (2018)
Lung cancer Wang et al. (2020c)
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enhances antitumor immunity by functional restoration of effector
immune cells. However, PD-1 function is still debatable in some
suppressive immune and tumor cells.

TI B cells are also one of the debatable populations and their
function in the TIME is controversial. While the therapeutic
effect of PD-1 therapy on TI Bregs is well identified (Xiao et al.,
2016), that on TI B cells responsible for producing a tumor-
specific antibody, tumor-antigen presentation, and secretion of
cytokines is poorly understood. In addition, PD-1 expression in
these TI B cells is not identified. Therefore, further studies are
needed to identify PD-1 expression and function in these TI
B cells. PD-1 function in tumor cells is also unclear (Schatton
et al., 2010; Kleffel et al., 2015; Li et al., 2017; Du et al., 2018; Pu
et al., 2019; Wang X. et al., 2020). The incidence of tumors is
induced by various factors (e.g. somatic mutations,
environmental factors, etc). The characteristics of tumor cells
are heterogeneous according to the tumor type. This
heterogeneity can be one of the reasons why PD-1 acts
differently on tumor cell types. Since the majority of TIME is
composed of tumor cells, it is necessary to accurately identify the
expression and function of PD-1 in tumor cells for exact
evaluating the therapeutic effect of PD-1 therapy.

Interestingly, PD-1 may act differently in Tconvs and Tregs. PD-
1 inhibits various TCR downstream signaling pathways in T cells.
Among the various TCR downstream signaling pathways, the
mTOR pathway is a well-established downstream signaling
pathway of TCRs and is known to play different roles in Tconvs
and Tregs. ThemTORpathway in T cells is highly downregulated by
several inhibitory molecules (e.g., PTEN, TSC1, and LKB1) under
steady-state conditions (Chi, 2012). During TCR engagement, the
mTOR pathway is activated for the differentiation of naïve CD4+

T cells into T helper cell effector lineages, while mTOR activation
suppresses Treg differentiation (Chi, 2012). Indeed, PD-1 has been
demonstrated to inactivate the mTOR pathway via the
dephosphorylation of mTOR components and to stabilize Treg
development (Francisco et al., 2009), suggesting that PD-1
inhibits Tconvs and amplifies Tregs. Although there is still an
opposing suggestion that PD-1 inhibits Treg function, in terms
of regulation of the TCR downstream signaling pathway by PD-1,
the suggestion that PD-1 induces the function and development of
Tregs also makes sense. Therefore, the exact function of PD-1 in
Tregs should be further investigated in various contexts.

TIME is a complex and diverse environment and these
complexity and diversity can influence on the responsiveness
to PD-1 therapy (Binnewies et al., 2018). As analyzing these
complexity and diversity, several reliable biomarkers has been
explored to predict the responsiveness to PD-1 therapy and select
cancer patients who successfully respond to PD-1 therapy
(Kamphorst et al., 2017a; Binnewies et al., 2018; Khan et al.,
2019; Lee et al., 2020). One of the biomarkers discovered is the
examination of PD-1 expression in TI CD8+ T cells (Kamphorst
et al., 2017a). In the same manner, since the role of PD-1 has been
reported in various TI immune cells and tumor cells, an entire
examination of PD-1 expression in TIME can predict which cell
are dominantly targeted by PD-1 therapy and the therapeutic
effect of PD-1 therapy induced by certain cells. Additionally, this
examination can suggest a promising strategy to overcome
resistance to PD-1 therapy if cancer patients do not respond
to PD-1 therapy. Therefore, identification of PD-1 function is
important for understanding the mechanisms underlying various
immune cell-dependent effects of PD-1 therapy. This review
summarizes PD-1 function in TI immune cells and tumor
cells and provides insights into the comprehensive mechanism
underlying the therapeutic effect of PD-1 therapy.
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