The University of Texas at Austin Field Systems and Automation Laboratory

, The University of Texas at Austin

, The University of Texas at Austin

, The University of Texas at Austin

(The American Institute of Steel Construction)
[1]

25%

가

Austin)

Austin

Management)

Laboratory(FSCAL)가

FSCAL UT Austin

National Institute of Standard Technology (NIST) (Construction Automation) 가

(The University of Texas at

Richard Tucker , James O , Connor , Edward Gibson , Katherine Liapi , David Fowler , Al Traver S.V. Sreenivasan

FSCAL

(Automation Technology for Construction) , Infrastructure Maintenance, Transportation

, Full Scale Prototype Design, Field Testing, Application

UT FSCAL

Computer Application Information Technology(IT) Information
Management 가
Hardware
Application

J.J. Pickle Research Campus 3000 가

truction Engineering and Project

Systems and Construction Automation

Test Field 가

(Cons-

Field

Hydraulic, Pneumatic,
High Voltage Power Supply
. FSCAL
Hardware . . .

FSCAL Carl Haas

가 Director

 Sensor integration, fusion, and data analysis

- Automated road maintenance systems development
- Development of large scale manipulators for surface
- Finishing, materials handling, inspection, etc.
- Remote sensing for road

 $_{\star\star}$ Ph.D. Candidate CEPM Program UT at Austin, Lab. Engineer of FSCAL

^{* * *} Ph.D. Candidate CEPM Program UT at Austin Ph.D. Candidate CEPM Program UT at Austin

conditions

· Development of automated surface finishing

- · Techniques for large engineering structures
- · Automated power plant clinker clearing
- · Computer aided critical operations planning
- · Trenchless technologies
- · Automation feasibility analysis, and graphical programming and control for large equipment

1.Large Scale Manipulator [2]

Large Scale Manipulator Backhoe Concrete Pump

Large Scale Manipulator Control System UT(FSCAL), Du Pont, Dow Chemical, Bechtel Co.,

Construction Industry Institute (CII)

Large Scale Hydraulic Mani-Control System pulator

. Figure 1 22 Rough Terrain Crane LSM

Eight-lever

Control System

가

Eight-Lever Control

6-Degree Of Free-

dom(DOF) Spaceball(Figure 2) Control System

LSM

LSM Motion Control LSM Forward Inverse

Kinematics

Orientation

Position

Figure 1. UT LSM

Figure 2. 6 DOF Spaceball Controller

LSM Closed -Loop Control System

LSM Control

Operator

Motion

LSM

Control Graphical Interface LSM Moni-

toring 가

2. Automated Road Maintenance Machine (ARMM) [3]

가 가

가 UT FSCAL

Machine Vision Man-Machine Balanced Machine Control

Computer Image

System

Line-Snapping Algorithm(Figure 4) Vision Image

Path Planning Algorithm

Figure 3. UT Automated Road Maintenance Machine

Figure 4. Line (Spline) Snapping on the Crack

- · A comprehensive survey of automated road maintenance equipment prototype
- · A maintenance automation needs analysis for the State of Texas
- · A study for productivity and contracting practice for crack sealing in Texas
- · An evaluation of multi-sensor strategies for crack mapping including use of LASAR sensors, single axis range sensors, and partially automated alternatives
- · A demonstration of prototype crack sealing system
- · The development of efficient crack mapping and traversal algorithm
- · Field trials throughout the 10 states in US
- 3. Tele-Operated Clinker Clearing Robot [4]

Clinker

Ash Hopper

Hot Suit

Air Hammer

Clinker

Clearing Robot

3-Degree Of

Freedom(DOF) Manipulator

Graphical Interface(Figure 6)

Control

CAD Model Sensing Source . Tele-

· Improved worker safety through tele-operation

Operated Clinker Clearing Robot

- · Potential deployment of various end-effectors
- · Potentially faster than manual method with resulting draw down savings
- · Interference prevention
- Multi-Sensing and object modeling
- · Operator friendly control environment

Figure 5. Robot on the hopper structure

Figure 6. 3-D user-interface

UT Austin **FSCAL**

Laser - based Aggregate Scanning System(LASS), Rapid Local Modeling

FSCAL 가 가

. Construction Industry Institute(CII)

NIST

FSCAL

Field Test Texas Department of Transportation CII Pilot Feedback **Project**

가

가

가

FSCAL

Autonomous Rover Technology Laser **RFID** (Object) (Workspace) (Perception), (Position) **Navigation** (Integrated) Sensing

- [1] Ricles, J., "Next Generation Steel Structures, "Presentation delivered at the NIST/AISC Automated Steel Construction Workshop, Gaithersburg, MD, 6-7 June, 2002.
- [2] Owen, F., Park, G., Haas, C., Gibson, G., and Traver, A.,

- "Performance Testing of a Large Scale Manipulator to Determine Relative Utility of Several Operator Interfaces", The Journal of Automation in Construction, October 1997.
- [3] Kim, Y., Haas, C., and Greer, R., " Path Planning for a
- Machine Vision Assisted, Teleoperated Pavement Crack Sealer, "ASCE Journal of Transportation Engineering, Vol. 124, No. 2, pp. 137-143, Mar./Apr. 1998.
- [4] Seo, J., Haas, C., Saidi, K., and Sreenivasan, S.V., "Graphical

Control Interface for Construction and Maintenance Equipment, "ASCE Journal of Construction Engineering and Management, Vol. 126, No. 3, pp. 210-218, May/June 2000.