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A B S T R A C T

Currently there is a growing need for a versatile framework consisting of analytical and surrogate models to
ensure both accuracy and computational efficiency of collapse analysis under extreme actions. However training
metamodels for highly nonlinear structural responses requires large number of samples to achieve enough ac-
curacy. In this research a method is developed to achieve computational efficiency by implementing the
adaptively shifted integration-Gauss technique in conjunction with a core neural network metamodel. The
analytical model is validated by experimental data and its accuracy is further evaluated by detailed finite-
element analysis. The applicability and efficiency of the provided tool for highly nonlinear analyses are in-
vestigated using collapse assessment of a steel framed structure subjected to code-stipulated vehicle impact
loads. Thorough probabilistic analyses are carried out including reliability assessment, fragility analysis, and two
different sensitivity tests. The analysis results show the superiority and precision of this framework compared to
detailed finite-element analysis.

1. Introduction

Undoubtedly there is a growing trend towards probabilistic collapse
assessment of structures in recent years [1–3]. Evaluating a structure
under such condition needs intensive finite-element (FE) analyses to
find collapse probability. The problem becomes worse for fragility and
global sensitivity analysis. To overcome this problem, various techni-
ques and soft computing methods have been used such as artificial
neural networks (ANN), response surface methods, Kriging, etc. The
comparison of these methods for application in seismic fragility analysis
has been done recently by Wang et al. [4]. ANN metamodels are uni-
versal estimators and their accuracy does not depend on the dimension
of the input space compared to polynomial response surface methods
[5]. In the latter case, the accuracy is highly dependent on the number
of input parameters. Furthermore, response surface methods are based
on a specified function in advance while activation functions in ANN
metamodels can be adjusted by some coefficients based on inputs and
outputs in order to minimize the error. Thus response surfaces might
not be able to capture highly nonlinear responses [4]. It has been also
shown that nonlinear regression using ANNs has sometimes superiority
over Kriging [4]. Based on the aforementioned advantages, ANN has
gained a prominent position among optimization techniques [6–8].
However preparing samples for training ANNs using FE analysis is very

costly in terms of computational time, and highly nonlinear problems
generally require thousands of samples to achieve adequate approx-
imation using ANN metamodels. On the other hand, simulating the
collapse behavior of a structure under one specific scenario needs a
detailed analytical model to capture inherent nonlinear and non-
monotonic structural responses which in turn is quite time-consuming
[9]. In addition to applications to plane frames, trusses, or simple
structures [7,8,10,11], neurocomputing has been successfully applied
to analysis of large scale structures [12,13]. However collapse simula-
tion under extreme actions is still a matter of debate, especially when a
probabilistic analysis is involved. Analyzing structures under such
condition may directly result in numerical instability or need time
consuming numerical methods for convergence.

In order to partly deal with this problem, the alternate path method
(APM) recommended in the design guidelines [14,15] has been em-
ployed in many studies to investigate the collapse behavior of different
structures [2,16–20]. The prevalent assumption in these studies is based
on the speculation that the sudden column removal approach gives
conservative results; however this assumption does not hold for every
case. For instance, Kang and Kim [21] investigated collapse behavior of
moment frames subjected to vehicle collision. The study showed that as
a result of large lateral loads during collision, the maximum vertical
displacement of the beam-column joint above the impact location is
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much larger than displacements obtained from APM. Fu also [22] re-
ported that using APM in the collapse assessment of building structures
fails to consider large shear actions on column members.

Therefore, a versatile framework including both analytical and
surrogate models is required to provide enough accuracy and compu-
tational efficiency for collapse assessment under extreme actions. The
overall scheme of the framework developed in this study is shown in
Fig. 1. A reliable modeling approach called the adaptively shifted in-
tegration (ASI)-Gauss technique is utilized to fulfill the requirements for
a precise collapse simulation of framed structures under any loading
condition. The analytical model is first validated using experimental
data, and then the structural modeling procedure is embedded in MA-
TLAB programming [23] to generate the analysis model parametrically.
A core ANN metamodel is implemented in the code which is trained by
the samples from the parametric model structure. Accordingly un-
certainty propagation, assigning ANN parameters, and defining the
number of samples for training procedure can be done in the developed
framework. The number of samples and ANN parameters can be
changed based on the accuracy report to get the adequate approxima-
tion. At the next stage, samples from the analysis model are im-
plemented with a proper neural network architecture to conduct further
probabilistic analyses at a low computational cost. To show the ap-
plicability of the presented method for probabilistic collapse analysis
under large deformations, a steel structure subjected to code-stipulated
vehicle impact loads is investigated when uncertainties in loading,
geometry, and material properties are present.

Most studies about collapse analysis of structures under vehicle
impact have assessed the impact behavior of column members, though

the post-collision behavior of the structure at hand is of great interest.
For instance, El-Tawil et al. [24] evaluated the behavior of bridge piers
under vehicle collision and found that current standard provisions in
this field are non-conservative. Sharma et al. [25,26] assessed shear
capacity of reinforced concrete columns probabilistically and developed
methods for estimating the fragility curves under vehicle collision. Kang
and Kim [27] studied effects of different footing connection details on
impact behavior of a steel column. Here, a whole structure is in-
vestigated using reliability and fragility analysis under vehicle impact
loads on a corner column according to the European code [28]. The
accuracy of the model structure is further evaluated by comparing its
collapse behavior with a detailed FE model. To find the most influential
uncertain variables, the tornado diagram analysis (TDA) is carried out
and the results are compared with a variance-based global sensitivity
test. By taking advantage of the presented framework Monte Carlo si-
mulations (MCSs) are carried out efficiently.

The present research may provide a framework for different types of
probabilistic and reliability-based collapse analysis under extreme
loads, which is of great interest in practice. Furthermore, the compar-
ison of different sensitivity tests will show the tradeoff between effi-
ciency and accuracy which is helpful for researchers.

2. Computationally efficient analytical model

2.1. ASI-Gauss technique

To get the response of the structure under extreme loads, the
ASIFEM code [29] is employed which takes advantage of the ASI-Gauss

Fig. 1. Representation of the developed framework.
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technique. This technique provides computational efficiency in pro-
blems with highly nonlinear behavior such as collapse analysis. Based
on numerous advantages of the ASI-Gauss technique and its flexibility
in application to different problems, it has been utilized in a wide
variety of structural analyses such as impact loading [30], progressive
collapse [31], seismic collapse [32], and demolition [33].

The main idea in the ASI technique is to shift the integration point in
the beam element when a plastic section occurs to form a plastic hinge
at the exact location. When the plastic hinge is unloaded, the numerical
integration point is shifted back to the first position, thus capturing the
material-unloading behavior accurately. The relationship between the
locations of the numerical integration point and the plastic hinge is
obtained using the strain energy approximation of the FE beam model
and Rigid Bodies-Spring model (RBSM). This model consists of rigid
bars connected with rotational and shear springs, simulating the re-
lative rotational and sliding behavior of the adjacent bars.

In order to increase the solution accuracy in the elastic range, the
ASI technique is modified to the ASI-Gauss technique [30]. In this
technique, two consecutive element is considered as a subset of a
member. The numerical integration points of two consecutive elements
are considered in such a way that the stress evaluation points in the
elastic range coincide with the Gaussian integration points of the
member. The stresses and strains in the elastic range are evaluated at
the Gaussian integration points using two-point integration while one-
point integration is actually used per element. In this way, the appro-
priate elasto-plastic behavior of a member can be attained using fewer
elements and the rate of solution convergence is improved. Detailed
information regarding this technique can be found in Isobe [33].

2.2. Validation for progressive collapse potential

Although ASIFEM has been utilized and validated in different fields,
the accuracy of this code for simulating progressive collapse is further
validated in this study. For this purpose, the test results of the steel
structure with welded unreinforced flange-bolted web (WUF-B) shown
in Fig. 2 [34] is compared with the analysis results of ASIFEM. The
specimen is a full-scale two-span steel beam from the exterior moment-
resisting frame of a building designed for Seismic Design Category C.
The unsupported middle stub is monotonically subjected to a down-
ward displacement, simulating column removal. Two diagonal braces
are rigidly connected to the top of each column and are attached to the
floor. These braces do not participate in resisting the vertical deflection
of the beams, but only restrain the ends of the columns to simulate the

effect of beams and bracing on upper floors. Material properties of the
subassemblage are given in Table 1.

The analysis model is established in ASIFEM based on the symmetric
condition and the column restraint is modeled as the ideal fixed-end
support. In the ASIFEM code, materials are modeled using a perfectly
elastic-plastic behavior with bilinear isotropic hardening as the con-
stitutive model. Each material assigned to a section is defined using
Young’s modulus, Poisson’s ratio, yield strength, strain hardening
modulus, and density. Each section is defined based on the area, tor-
sional coefficient, moment of inertia, and plastic modulus about the
weak and strong axis. Since each section is defined using one specific
yield strength in ASIFEM, the yield strength of the beam flange is taken
for the whole beam section. The Young’s modulus and the strain
hardening ratio are also calculated using the reported information.
Geometric nonlinearities, i.e. large deformations and strains, are taken
into account using the updated Lagrangian formulation. The analysis
model for ASIFEM is depicted in Fig. 3(a), and the comparison between
the analysis results and the experimental data are presented in Fig. 3(b).
As can be seen in Fig. 3(b) the ASIFEM model can simulate the collapse
behavior of the subassemblage under large deformations reasonably
well.

3. Neural network metamodels

The Monte Carlo simulation (MCS) method can be employed for
both reliability and sensitivity analyses by generating a large ensemble
of samples and evaluating their structural responses. In spite of its
simplicity and robustness, this method is quite costly in terms of com-
putational time. Many methods have been proposed to alleviate the
problem, including ANNs which have proved to be an efficient surro-
gate model for reliability analysis [8,35,36].

ANNs aim at mapping from an input variable space to a response
space using a number of simple mathematical models called artificial
neurons. Each neuron, as depicted in Fig. 4, consists of the input

Fig. 2. Details of the test specimen.

Table 1
Mechanical properties of the WUF-B specimen.

Component f (MPa)y f (MPa)u εy εu

Beam web 395 500 0.0019 0.189
Beam flange 359 496 0.0017 0.174
Column 352 456 0.0018 0.190

M.M. Javidan et al. Engineering Structures 172 (2018) 440–452

442



channels receiving the input vector x[ ]i , weights w[ ]i , bias b, transfer
function f , and one output channel y. The input signals are multiplied
by the weights and summed with the bias as a corrective term. To
generate the output y, the summation is input to the transfer function
which is usually one of the Linear, Tan-sigmoid, Log-sigmoid, or Step
functions. Due to nonlinearity and continuity, the Tan-sigmoid transfer
function, i.e. hyperbolic tangent sigmoid, is commonly used in various
problems [8,37]. This process with consideration of the Tan-sigmoid
function can be expressed as,

= +y f w x b( · ) (1)

=
+

−−f x
e

( ) 2
1

1.x2 (2)

To make a confident prediction given the input vector, the weights
and bias must be well-balanced. Finding these parameters is called
training process which can be done using training algorithms and a
training set from previous experimental or numerical tests. Linking
neurons to each other and arranging them with a proper network ar-
chitecture leads to a versatile tool called artificial neural networks. One
of the most efficient network architectures is the multilayer feed for-
ward network which is able to approximate highly nonlinear functions,
if properly trained [36]. In this network there are several layers of
neurons and the signals are transmitted from one layer to the next layer
in one direction. The neurons are arranged in parallel at each layer
while linked to all neurons of the next layer. Therefore the number of
neurons in the input and output layer is equal to the number of input
and output signals. Since the efficiency of multilayer feed forward
networks in uncertainty and reliability analysis has already been de-
monstrated [7,8], it is therefore chosen for prediction of the structural
response in this study.

Uncertainty propagation, sampling, and training the core ANN in
the application are done automatically using MATLAB programming,
and for each realization the structural response is obtained by calling
the ASIFEM code from MATLAB. Different training algorithms and the
number of layers and neurons are evaluated to find the most efficient
performance for collapse analysis. By trial and error, the Levenberg-
Marquardt training algorithm is selected, and ANNs with the Tan-sig-
moid transfer function and one hidden layer seemed to be quite ap-
plicable [8]. The number of neurons in the hidden layer is defined by
the user. As previously noted by Mitropoulou and Papadrakakis [13],
training ANNs within a range of input parameters and using it for ex-
trapolating could be problematic. Hence in the implemented frame-
work, uncertainty parameters are sampled uniformly all over their
range using the Latin-hypercube sampling (LHS) technique [38], thus
compelling ANNs to interpolate between the values. It should be
mentioned that, these samples are for training the ANNs, and when the
metamodels are ready the probabilistic analyses are done using the
specified distributions. The reason for training with uniformly sampled
parameters is that the ANN trained with specific distributions might
lead to a biased estimator, and it might not be properly applicable to
other studies like fragility analysis. Certainly, small number of samples
corresponding to low probability cases exist and this could result in
some error afterwards. In order to eliminate spurious correlation and
have evenly distributed samples with good space-filling properties, all
samples are generated five times iteratively and the minimum distance
between them is maximized [39,40]. The data for training ANNs are
standardized and normalized automatically by MATLAB for feed for-
ward networks. The accuracy report is provided by using 30% of the
samples for test and validation. Therefore number of neurons and
samples can be changed to get desired approximation.

4. Case study structure

To show the applicability, accuracy, and efficiency of the estab-
lished framework, a steel building structure is analyzed under vehicle
impact loads on the corner column. In order to get insight into the
accuracy of the analysis model under applied impact loads, structural
responses of the model in ASIFEM are compared to those of a detailed
FE model.

4.1. Structural representation

The model structure used in the analysis is a steel moment resisting
frame with three bays and three stories designed for dead and live loads

Fig. 3. Validation of ASIFEM: (a) Analysis model; (b) comparison between analysis and experimental results.

Fig. 4. Artificial neuron.
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of 5 kN/m2 and 3 kN/m2, respectively. All structural members are H-
shaped sections with a Young’s modulus of ×2 10 MPa5 . The yield
strength of beams and columns are respectively 330 MPa and 370 MPa.
The cross-sectional dimensions of beams and columns are shown in
Fig. 5(a). The first story height is 5 m and the heights of the other two
stories are 4 m. As structures are generally more vulnerable to acci-
dental actions on corner columns [16,21], vehicle collision scenarios
with the weak and strong axis directions of the corner column are
considered. The plan layout of the model structure and the collision
scenarios are presented in Fig. 5(b).

4.2. Uncertainty propagation

The properties of the structure presented above are nominal values
while in this section uncertainties in the loading, geometry, and ma-
terials are described. A total of nineteen uncertainty parameters are
considered in this study which are shown in Table 2. The abbreviations
provided in Table 2 are used to present the results of the study. The
dead load DL is normally distributed with a 5% increase over the mean
value [41]. The live load LL can be divided into the sustained load and
the intermittent load [42]. The sustained load is also called ‘arbitrary-

point-in-time live load’ [41] because this load presents the average load
during a particular occupancy while the intermittent load or the ex-
traordinary load is related to a rather short duration such as renovation,
gatherings, etc. As the vehicle collision is also an arbitrary-point-in time
incident, only the uncertainty in the sustained load is considered. The
load combination of +DL LL0.25 is applied according to [15].

The variations of the material properties are represented by a
multivariate lognormal distribution according to [42]. The variabilities
in the yield strength and Young’s modulus are considered. The mean
values for the elastic moduli are considered to be equal to the specified
nominal values. The mean yield strength can be calculated as

= − −f f α u v C· ·exp( · )y ysp (3)

where fysp is the specified nominal yield strength; α is the spatial po-
sition factor accounting for the subtle difference in the yield strength of
webs of hot rolled sections with a factor of 1.05; u is a factor showing the
discrepancy between the nominal and mean value, ranging between
−1.5 to −2.0 for sections produced with European standards (EN stan-
dards) [42]; v is the variability or c o v. . equal to 0.07; and C is the yield
strength reduction constant for which the value of 20 MPa is re-
commended. In this study α and u are assumed to be 1.0 and −1.5,

Fig. 5. Structural representation: (a) cross-sectional dimensions; (b) plan layout and collision scenarios.

Table 2
List of uncertainty parameters.

Category Parameter Mean c o v. . or σ Distribution References

Gravity loads Dead load DL 5.25 kN/m2 0.10 Normal [41]
Live load LLapt

a 0.575 kN/m2 0.4 Gamma

Steel properties Yield strength of beams fyb 346 MPa 0.07 Lognormal [42]

Yield strength of columns fyc 391 MPa 0.07

Elasticity modulus for beams Eb Nominal value 0.03
Elasticity modulus for beams Ec Nominal value 0.03

Cross-sectional dimensions for both beams and columns Outside height t1 Nominal value 0.05 Normal [41,42]
Flange width t2
Flange thickness tf

Web thickness tw

Construction tolerances Beam length L Nominal value 30.4 mm Normal [42,43]
First story column height H

Impact load Vehicle stiffness k 300 kN/m 60 kN/m Lognormal [28,42]
Vehicle mass m 20, 000 kg 12, 000 kg Normal
Vehicle velocity V 16 km/h 3.2 km/h Lognormal

a Arbitrary-point-in-time live load.
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respectively.
It is recommended that the normal distribution can satisfactorily

represent geometrical member dimensions [42]. For sectional dimen-
sions, the nominal handbook properties can be taken as the mean value
with a c o v. . of 0.05 for hot-rolled sections [41]. The European Standard
[43] specifies that the constructional tolerance on the length of H-
sections is ± 50 mm. Hence, it is assumed that the length of a member is
normally distributed and the standard deviation is calculated such that
90% of values fall within the stipulated tolerance.

Dynamic vehicle impact loading is based on the European Standard
for accidental actions [28]. This formula uses the ‘rigid structure’ as-
sumption while the vehicle is considered as an elastic system. Hence,
the maximum interaction force and the impact time can be obtained as

=F V km (4)

= =F t mV t m kΔ or Δ / (5)

where V, k, m are respectively the velocity, equivalent elastic stiffness,
and mass of the vehicle. In Eurocode an automobile collision impact
force is represented by a rectangular pulse. In this study the vehicle is
assumed to be a truck and therefore according to [28] the mass in the
formula is normally distributed with a mean value of 20, 000 kg and a
standard deviation of 12, 000 kg. To prevent negative mass during
sampling, a truncated probability distribution is utilized. The velocity is
assumed to be a lognormal variable with a mean and a standard de-
viation of 16 km/h and 3.2 km/h, respectively. The stiffness is con-
sidered as a deterministic parameter in the European Standard with a
mean of 300 kN/m, while it is a lognormal variable in the probabilistic
model code [42] with a standard deviation of 60 kN/m. In order to
incorporate the variability of the stiffness parameter, the vehicle stiff-
ness is also considered as an uncertainty source, following the prob-
abilistic model code. The spatial variation of uncertainty parameters is
not considered and it is assumed that all the parameters are spatially
correlated in the whole structure.

4.3. Accuracy of the analysis model under impact loads

To validate the accuracy of ASIFEM to simulate the overall behavior
of structures under impact loads, the case study structure is also mod-
eled in LS-DYNA [44] which is a general purpose FE code. The center of
the corner column in the detailed model is subjected to an impactor as
shown in Fig. 6. The properties of the impactor used in the analysis is
given in Table 3. The impact forces obtained from LS-DYNA are sim-
plified as rectangular forces as recommended in the European Standard
and then are applied to the ASIFEM model for efficient analysis and
comparison.

The structure is modeled in LS-DYNA using solid elements, as shown
in Fig. 6(b), with an elastoplastic material called MAT_PIECEW-
ISE_LINEAR_PLASTICITY, and the contact is defined using the
CONTACT_AUTOMATIC_SURFACE_TO_SURFACE keyword. The im-
pactor used to generate the impact force is modeled using the MAT_E-
LASTIC material. The dead and live loads are distributed to the beams
according to the tributary area. On the other hand, a simplified model is
established in ASIFEM under the same condition of the detailed model
(Fig. 6(d)). For the impact analysis the simplified model utilized the
consistent mass matrix formulation with the aim of improving com-
putational accuracy and the Newmark-β method with an incremental
time step of 1 ms with 2% damping ratio.

Fig. 7 shows the time histories of the impact loads generated by the
impactor in LS-DYNA, which are simplified into rectangular impulses to
be used in ASIFEM. The simplification is made in such a way that the
rectangular impulses and the time history of the impact loads have the
same maximum forces and total impulses. The vertical displacements of
the beam-column joint above the corner column are compared in Fig. 8.
Although there are some discrepancies, there is a reasonable agreement
between the results. The outcomes are quite satisfactory considering the

fact that LS-DYNA analysis takes almost 112 h using a PC with the Intel®
Core i7-7700k processor whereas it takes around 20 s in ASIFEM. Al-
though an adaptive mesh could be used to reduce the computational
cost of LS-DYNA analysis, the computational efficiency of the ASIFEM is
incomparable when samples in the order of 20,000 are needed. Thus
ASIFEM is used in the provided framework for sampling and realiza-
tions at the first stage, then metamodels are trained with these samples
in order to drastically reduce the computational time.

For further analyses, two ANNs corresponding to two collision
scenarios along the weak and strong axis of the corner column are
considered. The maximum beam rotation in the damaged bay in one
second after impact is employed as a measure for the structural re-
sponse and output of the ANNs for post-collision evaluation. Six
training sets with different numbers of samples ranging from 500 to
20, 000 are considered for each scenario. The number of neurons in the
hidden layer is set to be 20. In the following section, it is shown that
these assumptions give adequate accuracy for the problem at hand.

5. Reliability analysis

The reliability analysis of the model structure is conducted with
20, 000 realizations. The structural response for each realization is re-
trieved by both the conventional FE analysis using ASIFEM and ANNs
trained with different number of samples. The goodness of fit of the
ANNs as surrogate models is evaluated and the failure probabilities
from both approaches are also compared. The limit state function g X( )
for the reliability analysis is defined based on the rotational demand on
beams in the damaged bay where X is the vector of random variables
for each realization. Their corresponding limit states are defined ac-
cording to [45] as shown in Table 4. These limit states and failure
criteria are related to four damage levels of steel structures subjected to
extreme loads which correspond to the light, moderate, and severe
damage states.

The failure state is reached when ⩽g X( ) 0, and by using MCS the
failure probability is estimated as,

∑=
=

P
N

I X1 ( )f
i

N

i
1 (6)

where N is the number of realizations equal to 20, 000 in this part and I
is the failure indicator expressed by,

= ⎧
⎨⎩

⩽
>

I X
g X
g X

( )
1 ( ) 0
0 ( ) 0

.
(7)

The results of the FE-based reliability analysis are compared with
the ANN-based ones in Tables 5 and 6 for the two collision scenarios.
The required time is considered as the computational cost which also
includes the time for sampling and training the ANNs. The goodness of
prediction for the 20, 000 samples is quantified using the mean absolute
error MAE , mean squared error MSE , and coefficient of determination
R2. In the next columns, the failure probabilities for three limit states
are also shown. It can be seen that the MAEs are much smaller than the
range between the limit states and as a result the failure probabilities
could be approximated reasonably. R2 and MSE are sensitive to outliers
but these statistics also show a close prediction. The statistics and
comparison between the failure probabilities show that the ANNs
trained with more than 5000 samples can predict the structural behavior
of both scenarios with a sufficient accuracy. Although ANNs trained
with larger sample sets are more accurate, the improvement in preci-
sion afterward is not significant compared to the number of samples. By
investigating the failure probabilities of the ANN-based MCS and FE-
based MCS, it can be inferred that errors are mostly related to collapse
extents. This is due to the high nonlinearity and non-monotonicity of
the structural response in extensive collapses.

Fig. 9 compares the 20, 000 maximum rotational demands on beams
obtained from FE analysis with the values predicted by the ANNs
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trained with 10, 000 samples. The aforementioned fact can be seen in
Fig. 9(a) and (b) where the data are more scattered at large deforma-
tions, especially for the weak axis scenario which is more critical. The
error histograms in Fig. 9(c) and (d) show that the ANNs trained by
10, 000 samples produce quite accurate results, and based on the results
and the computational costs they are employed for further analyses.
Although the ANNs are trained with uniformly distributed samples all
over the input and output space, they can practically estimate the
failure probability for specific distributions defined for the structure.
This means that they can estimate the structural response for any spe-
cific realization. The goodness of fit also ensures this ability of the
ANNs.

The discrepancies between the presented failure probabilities are
partly attributable to the MCS estimation with a small number of
samples. According to Shooman [46], the accuracy of a failure prob-
ability obtained using MCS can be approximated by the coefficient of
variation c o v. . as,

=
−

c o v
P

P n
. .

1 f

f MCS (8)

where Pf is the failure probability and nMCS is the corresponding

number of samples. The minimum failure probability for the case study
structure is in the order of 3.4% and is related to the impact along the
strong axis direction. To find the failure probability with a c o v. .
around 1%, approximately ×3 105 samples are needed. The results for
reliability assessment considering the required accuracy and number of
samples are shown in Table 7. The reliability indices are calculated
using the first-order approximation as follows,

= − −β PΦ ( )f
1 (9)

where −Φ 1 is the inverse cumulative distribution function of the stan-
dard normal distribution.

The reliability analysis shows that the model structure is highly
prone to collapse under vehicle impact loads on the corner column,
especially along the weak axis direction. The failure probability in-
dicates the probability of exceeding a certain damage state. The results
show that the probability for severe damage is lower than that of the
light damage state. This implies that expecting at least light damage
after the collision is more probable. As the reliability indices are pro-
portional to the inverse cumulative distribution function of the failure
probability, the reliability indices for the severe damage state is higher
compared to that of the light damage state. The recommended
minimum reliability index for common structures is =β 3.8 according
to Eurocode [47] which corresponds to = × −P 7.23 10f

5. Important
structures and facilities suffering from this sort of vulnerability can be
retrofitted in accordance with the occupancy and risk level. Another
decisive factor in making provisions could be based on sensitivity
analysis. To have realizations falling in a desirable output range and
control the output uncertainties, sensitivity analysis is an invaluable
tool which is addressed in the next section. Finally, it is observed that

Fig. 6. Configuration of the analysis model subjected to an impact on the corner column: (a) location of the impactor; (b) modeling of the impactor; (c) stress
distribution; (d) ASIFEM model.

Table 3
Properties of the impactor used in the impact analysis.

Mass Velocity Size Young’s
modulus

Stiffness EA L/

7962 kg 20 km/h × ×175 mm 175 mm 1000 mm 10 MPa 306 kN/m
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there is no much difference between severe damage probabilities along
both directions, but this difference is completely tangible for the light
damage state.

6. Sensitivity analysis

6.1. Tornado diagram analysis

Sensitivity analysis is usually performed to identify influential fac-
tors and their relative importance in a system. In order to simplify a
modeling approach or reduce output uncertainties in reliability ana-
lysis, the results from sensitivity tests are of paramount importance.
Based on a problem at hand and the corresponding setting, different
sensitivity tests can be applied. One of the commonly used methods is
the tornado diagram analysis (TDA) owing to its simplicity [48]. In this
method, it is tried to ascertain the sensitivity of the output to uncertain
parameters by varying each parameter between upper and lower
bounds while keeping other parameters constant at a base value. The
difference between the output values for each parameter is called
swing, and it is depicted in descending order using a bar chart named

tornado diagram. In the present research, the mean value is considered
as the base value, and the two bounds for each variable are determined
to be twice the standard deviation below and above the mean, except
the vehicle mass for which the lower bound is considered to be zero to
prevent the negative value for mass. The results of TDA for the two
collision scenarios are shown in Fig. 10. The bars are arranged in ac-
cordance with FE-based rotational demands, and the ANN-based out-
comes are demonstrated correspondingly using solid lines. The mean
rotational demand is denoted by a vertical thick line.

It is seen that variations in the vehicle properties are the most in-
fluential factors in vehicle impact loading. Overall, the yield strength,

Fig. 7. Time histories of impact loads obtained from LS-DYNA and their simplifications for ASIFEM: (a) strong axis direction scenario; (b) weak axis direction
scenario.

Fig. 8. Vertical displacements at beam-column joint obtained from LS-DYNA and ASIFEM: (a) strong axis direction scenario; (b) weak axis direction scenario.

Table 4
Failure criteria for steel structures under extreme loads.

Element Failure type Damage

Light (rad) Moderate (rad) Severe (rad)

Beams Bending 0.05 0.12 0.25
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flange thickness, flange width, and height of beam-column sections are
the next important parameters while variations in the web thickness
and elasticity modulus of sections seem insignificant. Uncertainties in
geometrical properties and gravity loads do not have considerable in-
fluence on the outcomes, especially the live load which has minute
effects. Although there are some discrepancies in the FE-based and
ANN-based results, the metamodels shows reasonable accuracy. In most
cases both methods produce consistent results, which shows that the
ANNs can be used as surrogate models for further analysis.

6.2. Global sensitivity analysis

To study the effects of the input parameters in depth and take ad-
vantage of the ANNs, a variance-based form of sensitivity analysis is
carried out and the results are compared with the TDA. The variance-
based sensitivity test, or sometimes called Sobol’s sensitivity analysis,
aims to quantify the influence of input parameters on the output var-
iance of a system [49]. The turning point of this method can be found in
the work of Sobol [50,51], and it is further refined by Saltelli et al.
[49,52]. This method has been widely used in studies on stability of
structures with initial imperfections by Kala [53–55]. Arwade et al.
[56] also used global sensitivity for structural systems and investigated
the effects of input distributions and possible approximation of the
response function. A brief description of the global sensitivity analysis
is outlined in the following.

Given Y as the scalar output and function of …x x x( , , , )k1 2 , the main
contribution of the i th input parameter alone to the total output var-
iance V Y( ) is called the first-order index and can be obtained using the

conditioned variance as,

=S V E Y x
V Y

( ( | ))
( )

.i
i

(10)

This indicates that the variance is calculated while varying solely xi
and averaging the output for all possible variations of other input
parameters for each fixed xi. Hence, the influence of varying one
parameter can be found and the effects of other parameters are elimi-
nated by averaging over their variations. The sum of the first-order
indices ∑ Si is equal to unity for additive models in which there is no
interaction between variables. The interaction between xi and xj can be
stated as,

= − −S
V E Y x x

V Y
S S

( ( | , ))
( )

.ij
i j

i j (11)

However, obtaining all interactions for a function with k variables
needs −2 1k terms which is impossible in high-dimensional spaces.
Therefore another measure called the total effect is employed, which
can be determined by:

= − ∼S V E Y x
V Y

1 ( ( | ))
( )Ti

i

(12)

where ∼x i denotes the inner expectation which is conditioned on all
variables except xi. Thus the term ∼V E Y x( ( | ))i includes all sources of
variation except the i th variable, and by subtracting it from the total
variance, the total effect of the considered variable can be calculated.
The first-order index along with the total effects can practically show
the overall characterization of a model [57]. Further information on
global sensitivity analysis can be found in [49].

In the present research, the first-order sensitivity indices and total
effects are approximated using MCS and the estimators suggested by
Saltelli et al. [49] with a total cost of +N k( 2) runs. The proper number
of samples N for the convergence is ensured by conducting the analysis
with 100 different sets of N samples and finding the 95% confidence
interval (CI) for each N . The sum of the first-order indices for the two
scenarios is depicted against the number of samples in Fig. 11. It can be
seen as the number of samples increases the CI becomes narrower, the
sum of the first-order sensitivity indices converges, and the error of
MCS decreases. Based on the observations 50, 000 samples are con-
sidered with the aim of providing a reasonable accuracy and the results
of global sensitivity analysis are reported for this case.

The results from global sensitivity analysis are shown in Fig. 12 and
it is seen that they are almost consistent with TDA, though there are
some differences in the order of sensitive parameters. These outcomes
show the influence of each parameter on the output variance which is
different from the viewpoint of TDA. However, based on the results
from global sensitivity analysis, it can be concluded that TDA can be
used as a quite effective and simple sensitivity test. The major factors in
the output response are attributed to the vehicle properties. Sectional
properties except the web thickness and elasticity modulus come next

Table 5
Accuracy of the ANNs for reliability analysis under collision in the strong axis
direction.

Method -
sample
set

Computation
time (s)

Goodness of fit Failure probability

Light Moderate Severe

MAE MSE R2 Pf Pf Pf

FE -
20, 000

385, 882 – – – 0.299 0.145 0.034

ANN -
500

10, 949 0.013 × −5.04 10 4 0.907 0.278 0.103 0.025

ANN -
1000

20, 743 0.008 × −2.06 10 4 0.962 0.277 0.124 0.029

ANN -
2000

39, 186 0.006 × −1.44 10 4 0.973 0.300 0.137 0.027

ANN -
5000

93, 827 0.006 × −1.34 10 4 0.975 0.309 0.163 0.039

ANN -
10, 000

187, 936 0.005 × −9.70 10 5 0.982 0.311 0.157 0.039

ANN -
20, 000

385, 370 0.004 × −6.11 10 5 0.988 0.302 0.145 0.033

Table 6
Accuracy of the ANNs for reliability analysis under collision in the weak axis direction.

Method - sample set Computational time (s) Goodness of fit Failure probability

Light Moderate Severe

MAE MSE R2 Pf Pf Pf

FE - 20, 000 399, 005 – – – 0.639 0.353 0.082
ANN - 500 11, 276 0.025 × −1.2 10 3 0.853 0.551 0.246 0.055
ANN - 1000 20, 876 0.021 × −9.00 10 4 0.891 0.587 0.267 0.057
ANN - 2000 38, 948 0.014 × −4.69 10 4 0.943 0.622 0.314 0.072
ANN - 5000 94, 919 0.011 × −3.50 10 4 0.957 0.618 0.337 0.088
ANN - 10, 000 187, 259 0.011 × −3.15 10 4 0.962 0.629 0.331 0.074
ANN - 20, 000 373, 397 0.010 × −2.87 10 4 0.965 0.645 0.339 0.076
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like the TDA results. It can be inferred from both sensitivity tests that
the flange thickness and yield strength of the corner column is more
influential under impact load in the strong axis direction whereas the
height and yield strength of the beam have key roles in the other di-
rection. This stems from the fact that the corner column is more vul-
nerable to impact loads in the weak axis direction and its sectional
properties do not contribute substantially to the collapse prevention.

Hence, the beams must span the damaged parts. The superiority of
global sensitivity analysis can be found when it comes to interaction
effects. The difference between the total effects and the first-order
sensitivities show the interaction between parameters and high-order
sensitivities. According to the results, interactions other than those
between loading parameters do not have much influence on the output
variance. Other parameters have therefore negligible effects and one
could get the impression that they seem rather insignificant in global
sensitivity analysis compared with the results of TDA. It demonstrates
the ability of this analysis to quantify the impact of each parameter
precisely. Thus, it is worthwhile to mention that considering un-
certainties in loading is quite sufficient for probabilistic investigation of
structures subjected to vehicle collision. Finally the sensitivity analysis
shows that controlling the vehicle velocity, for example by means of
security bollards or a proper standoff distance, seems to be the best way
of collapse prevention under vehicle collision.

7. Fragility analysis

To elucidate the overall collapse behavior of the structure, fragility

Fig. 9. Comparison of the maximum rotational demands on beams obtained from the FE analysis and the ANNs: (a) strong axis direction scenario; (b) weak axis
direction scenario; (c) error histogram for strong axis direction scenario; (d) error histogram for weak axis direction scenario.

Table 7
Results of reliability analysis.

Collision
scenario

Limit states

Light Moderate Severe

Pf β c o v. . Pf β c o v. . Pf β c o v. .

Strong axis
direction

0.314 0.486 0.003 0.159 0.998 0.004 0.041 1.734 0.009

Weak axis
direction

0.628 0.327 0.001 0.332 0.435 0.003 0.076 1.431 0.006
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analysis is a handy tool and can be done very easily using the developed
framework. The fragility function F x( )d herein gives the conditional
probability that the damage measure DM exceeds the limit state d,
given x as the intensity measure IM ,

= ⩾ =F x P DM d IM x( ) ( | ).d (13)

The maximum rotational demand on the beams in the damaged bay
is considered as the damage measure and the limit states are as men-
tioned before. Fragility curves have been customarily explained as a
function of gravity loads for progressive collapse assessment, even
though gravity loads on structures do not vary significantly [2,3,58].
This is because the only suitable parameter for the intensity measure
could be the gravity loads when using the threat-independent approach
and considering sudden column removal. Instead, the vehicle velocity
in the loading formula is considered as the intensity measure in this
study. The failure probabilities corresponding to vehicle velocities are

Fig. 10. Tornado diagrams: (a) loading in the strong axis direction; (b) loading in the weak axis direction.

Fig. 11. Convergence of sum of first-order sensitivity indices and its 95% CIs.

Fig. 12. First-order sensitivity indices and total effects.
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obtained using reliability analysis up to the velocity of 32 km/h for
which the ANNs are trained properly. The range of velocity is divided
into steps of 0.1 km/h and for each velocity ×1 106 samples are used to
carry out MCS.

The fragility curves for the two collision scenarios are shown in
Fig. 13. It is seen that the structure is more vulnerable to collision in the
weak axis direction and its fragility curves are bended slightly leftward.
The median collapse velocities related to the light, moderate, and se-
vere damage states are respectively 18.4 km/h, 22.2 km/h, and
29.4 km/h for the strong axis direction scenario and 13.4 km/h,
18.4 km/h, and 26.8 km/h for the weak axis direction scenario. Finally it
should be noted that, as the ANNs are universal estimators, obtaining
the fragility curves considering other parameters as the intensity mea-
sure is straightforward which is another advantage of neurocomputing.

8. Conclusions

In the present research, a new framework including both verified
analytical and surrogate models was established to provide a basis for
probabilistic collapse assessment of structures under extreme actions.
The efficient ASI-Gauss technique was verified by experimental data
and implemented in conjunction with a core neural network in the
application by MATLAB programming. The developed method enables
parametric structural modeling using ASIFEM to train the core ANN and
conduct further probabilistic collapse assessment. To show the applic-
ability of the established method, vulnerability of a steel moment frame
structure under code-stipulated vehicle impact loads was investigated.
The accuracy of the analysis model and the ANNs were validated first
and then reliability assessment, sensitivity tests, and fragility analysis
are conducted.

Based on analysis results, it was concluded that the established
framework is suitable for collapse assessment under extreme loads and
actions in which numerous probabilistic analyses are to be conducted.
However, more attention must be paid to training ANNs for problems
with highly nonlinear and non-monotonic responses. The results from
the reliability analysis of the case study structure showed that the
structure was highly vulnerable to vehicle impact loads on the corner
column. The results from both sensitivity tests showed that vehicle
parameters in the loading formula are the most influential factors in the
output uncertainty. The overall collapse behavior of the structure was
evaluated using fragility analysis, which showed that the probabilities
of reaching the three different damage states are larger for impact loads

along the weak axis.
The analysis results showed that the computational efficiency for

probabilistic collapse assessment of framed structures was improved in
terms of realization and metamodeling using an efficient analytical
model and artificial neural networks, respectively. However efficient
models for more complicated structures or approximation of total col-
lapse behavior of a whole structure using deep learning methods are
still matters of debate. Moreover, fracture and contact between ele-
ments are not considered in this study which could give rise to ex-
tremely high nonlinearity and further inaccuracy in the metamodels.
Thorough study is still required to cover the aforementioned limita-
tions, which is beyond the scope of this research.
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