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Viscoelastic polymer composites are widely used for vibration control in different fields of engineering 
like aerospace, mechanical, and structural engineering. The viscoelastic properties of these materials 
are strain rate-dependent and are highly related to frequency. Yet to date, less attention has been 
paid to quantifying the effects of these parameters and their interactions on damping properties 
and providing an approximation method for further applications. In the present research, a series 
of experimental tests was conducted on a viscoelastic material and the experimental data were 
numerically analyzed in detail. Sensitivity analyses are usually applied to quantify uncertainty using 
sampling techniques. However, in this study a method was proposed to derive a closed-form solution 
using the response surface function and a derivative-based global sensitivity analysis to evaluate 
the output contribution of each parameter. These effects were quantified and several approximation 
statistics were provided for future engineering implementations. The computational evaluation 
conducted in this study gives a detailed insight into the mechanical behavior of viscoelastic materials.

Viscoelastic polymer composite materials or, in short here, viscoelastic materials (VEMs) are effectively used 
to attenuate the dynamic response of various devices and structures and dissipate the acoustic energy due to 
their viscoelasticity and damping properties1–7. Having a quite accurate estimation of these properties and their 
mechanical behavior is of paramount importance in engineering design. However, the key point about the appli-
cation of VEMs is their complex behavior due to the strain-rate dependency which can be also unknown prior 
to the design. Hence, there is a need to quantify these effects and provide a confidence interval for practical 
implementation of these materials. The main factors affecting the mechanical behavior of VEMs are excitation 
frequency, strain amplitude, number of cycles, and ambient temperature. The storage modulus of reinforced vul-
canized elastomers decreases as a function of strain amplitude, and the loss modulus shows an initial increase 
but decreases afterwards, which is called the Payne effect8,9. Many experimental studies have been carried out to 
evaluate the effects of these factors10–14 and they showed that the damping properties of VEMs are more or less 
sensitive to these factors. Chang et al.14 stated that the load frequency and the temperature have significant effects 
on dynamic characteristics. However, no significant effects were observed for strain amplitudes limited to 0.5 in 
their designed experiment. Therefore, the effects of strain amplitude was not considered in derivation of empirical 
functions14. Eftekhari and Fatemi15 studied the influence of loading frequency on the fatigue behavior of several 
composites under constant amplitude fatigue test. They developed an analytical model to take into account the 
effects of frequency, stress, temperature, and fiber orientation on the fatigue life. Lino et al.9 proposed a phenom-
enological model which takes into account the Payne effect, and describes the storage and the loss moduli as the 
function of frequency and amplitude.

Although effects of strain amplitude on VEMs can be considerable, the main approach in the previous research 
has been conducting parametric studies and comparing the results. As mentioned earlier, less attention has been 
paid to quantifying these effects to consider uncertainties in design. Providing a reasonable approximation and 
metamodel for damping parameters under a specific condition is also missing, and therefore design of devices 
like dampers using VEMs are complicated and mostly iterative16. In this study an approximation is made using 
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the response surface metamodel, and a closed-form solution is proposed which quantifies the exact effect of the 
strain amplitude and frequency on the moduli using sensitivity analysis and the response surface.

There are some studies on the sensitivity of damping properties to the layer thickness, temperature, or fiber 
orientations using numerical and analytical methods17–19. Sensitivity tests are generally utilized to identify the 
most influential parameters on an output response and the range of output variation due to them20–24. These 
results are used to approximate the variation in the output response, or its uncertainty which can be considered 
in analysis or design process. On the other hand, they can be used in control of the output response by monitor-
ing the influential factors or in model simplification. These studies showed that the damping properties can be 
changed due to the layer thickness and the fiber orientations can influence the hysteresis stress-strain curve17.

Scope and Limitations
In this research, a series of experimental tests was carried out to evaluate the effects of excitation frequency and 
strain on the damping properties of a viscoelastic polymer composite. As shown in Fig. 1, the framework of the 
present research can be divided into three sections. In the first section, the experimental test, material specifi-
cations, and other details are described. The viscoelastic properties are then determined using the Kelvin-Voigt 
model and statistical methods in the next section. The experimental data are evaluated based on a parametric 
study approach and the effects of frequency and strain amplitude on viscoelastic properties are assessed. A more 
in-depth numerical assessment of these parameters for the next part is carried out by approximating the response 
surface function, which can also provide a tool for further applications. In addition to ordinary statistical analy-
ses of experimental parameters, the effects of each factor were quantified using the fitted response surface and a 
derivative-based global sensitivity analysis which is called the Morris method25.

Sensitivity analysis is generally performed in the context of probability theory, and is done with sampling tech-
niques. However, sensitivity analysis is applied in this study with some modification, and a method is proposed 
to study the overall response surface using integration. The sensitivities are derived as a closed-form solution, 
and the implications are presented and discussed. The results of this sensitivity analysis quantify the exact effects 
of both frequency and strain amplitude all over the experiment domain, which can be utilized to estimate the 
damping properties of VEMs in practical implementations.

The main scope of this research is to study and quantify the effects of strain amplitude and frequency on 
viscoelasticity of polymer composite materials, and provide a sensitivity method for this end. Nevertheless, this 
research is carried out in a limited range of input parameters and only on one type of carbon-filled elastomer. The 
strain amplitudes are between 0.1 and 1.2 and the frequency is applied in a range of one decade between 0.05 Hz 
and 0.5 Hz which is practical frequency range in motion control of building structures. It should be noted that 
the results and observations are made based on the test domain, and might be changed in different strain and 
frequency ranges.

In this study the Kelvin-Voigt model is applied to describe the behavior of the vulcanized elastomer due to 
its practicality and wide application in the structural engineering field. As this model does not take the stress 
relaxation into consideration, it might be insufficient under the condition of large strain amplitudes. However, 
Kelvin-Voigt model can be easily utilized in most of the structural analysis softwares without difficulties. The 
provided supplementary dataset is also of interest for further use.

Experimental Test
Material specifications and experimental setup.  The composition specifications of the VEM tested in 
this research is shown in Table 1. The VEM is generally provided in the form of rectangular pads and is utilized 
under shear actions. The most common configuration is to attach two VEM pads between three steel plates, two 
outer plates and one moving plate at the center. Two test specimens were manufactured and the VEM pads were 
bonded to the steel plates by the molding process at the temperature of 135 °C for two and a half hours as shown 
in Fig. 2.

The dimensions of the test specimens and the test setup are shown in Fig. 3. The two specimens were tested 
under 3 frequencies, 7 displacement amplitudes, and 12 cycles at the room temperature between 18 °C and 23 °C. 
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Figure 1.  The framework of the present study for evaluating the effects of strain amplitude and frequency on 
damping properties of VEMs.
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The frequencies were fi = 0.05 Hz Hz, 0.5 Hz, and 0.5 Hz, and the first displacement amplitudes a1 was 1.8 mm 
corresponding to the strain amplitude of 0.1 and other amplitudes were determined by,

= −a j a2( 1) , (1)j 1

where ≤ ≤j2 7. Therefore, 24 combinations of frequency and amplitude were applied to the two specimens 
under 12 cycles and the data were obtained. The amplitudes and frequencies of the experiment were designed 

Component Ratio Component Ratio

Natural rubber 26.0% Stearic acid 0.5%

Synthetic rubber 13.0% Antioxidant 3.9%

Liquid rubber 13.0% Accelerator 0.6%

Carbon black 40.1% Sulfur 0.3%

ZnO 2.6%

Table 1.  Composition specifications of the VEM used in the experiment.

Figure 2.  (a) Assembly of the VEM pad, steel plates, and the mold. The mold was first preheated at 135 °C 
for one hour and then the parts were assembled in the mold. (b) Molding process of the test specimen. After 
assembling the material and the steel plates in the preheated mold, the molding process was done at the 
temperature of 135 °C for two and a half hours. Lastly, the specimens were separated from the mold and cleaned 
for the test.
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Figure 3.  (a) Dimensions of the test specimens (unit: mm). (b) Test setup. Details of the installation jig with a 
500 kN actuator acting on the test specimen.
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based on most commonly used parameters and operability range of the actuator, including the maximum loading 
rate and stroke.

Experimental Results
The mechanical behavior of VEMs can be represented by a parallel combination of linear elastic and linear vis-
cous behaviors26,27, which is called Kelvin-Voigt model. Accordingly, the relation between shear stress 𝜏 and shear 
strain γ is expressed by,

τ γ
ω

γ
= ′ +

″G G d
dt

, (2)

where G′ and G′′ are respectively storage and loss moduli with the unit of shear stress (MPa(N/mm2); ω(rad/s) is 
the angular load frequency. The shear stress and strain were calculated using the experimental force-displacement 
and the dimensions of the VEM pads. Strain is dimensionless and is equal to the ratio of the shear deformation of 
the VEM pad to its thickness (mm/mm). Compared to an ordinary sinusoidal function and Fourier expansion, 
the triangle wave was deemed to give better approximations of the imposed strain, which is determined as,
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where γ0 is strain amplitude and t is time. The first step in analyzing the effects of strain amplitude and frequency 
on the damping properties, is to obtain the storage and loss moduli with a good accuracy. To this end, the exper-
imental strain time history for each of the 42 tests was numerically applied to Eq. 2 and the moduli were deter-
mined in such a way that the numerical stresses were fitted to their corresponding experimental values. Each test 
contains 11264 to 14453 data points for shear stress with a total number of 561073 for the whole 42 tests. For each 
test, the storage and loss moduli were obtained by minimizing the sum of squared errors of stress prediction using 
the generalized reduced gradient algorithm28. For instance, the applied strain time history and the corresponding 
stress-strain curve for the strain amplitude of 0.6 and the frequency of 0.05 Hz along with the numerical results 
are depicted in Fig. 4.

The accuracy of numerical shear stresses obtained by finding the moduli and fitting Eq. 2 to the whole exper-
imental data was quantified in Table 2. The statistics are mean absolute error (MAE), root-mean-square error 
(RMSE) and the normalized one using interquartile range (RMSEIQR), Pearson correlation coefficient (Pearson’s 
r), and coefficient of determination (r2). The MAE and RMSE show the average error of 0.019MPa and a standard 

Figure 4.  (a) Applied strain to the test specimen under the strain amplitude of 0.6 and the frequency of 0.05 
Hz and its numerical simulation using the triangle wave function. Despite the fact that the nominal values of 
frequency and amplitude were known, the two parameters were fitted to get the closest estimation of the applied 
strain. (b) Comparison of the experimental and fitted numerical stress-strain curve of the VEM. The storage 
modulus defines the slope of the hysteresis curve and the loss modulus specifies the stress intercept while 
unloading.

Number of data MAE RMSE RMSEIQR Pearson’s r r2

561073 0.019 MPa 0.031 MPa 8.5% 0.994 98.8%

Table 2.  Goodness of fit of shear stress using the numerical model.
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deviation of 0.032 MPa. This variation in error is in the order of 8.5% based on the RMSEIQR which is analo-
gous to the coefficient of variation. Pearson’s r and r2 are also quite close to 1.0 and 100% and it shows that the 
numerical model with the obtained moduli fits well to the experimental data. The remaining error is partly due 
to imposing the predetermined strain function of Eq. 3 to the numerical model, and also partly due to the strains 
with large amplitudes under the scragging condition. Scragging is a change in the molecular structure of elasto-
mers under large strains so that they show more stable hysteresis behavior at lower strain levels29. As mentioned, 
fitting the numerical model to the experimental data was done in a point-by-point way by minimizing the sum 
of squared errors of stress prediction. In addition to the point-by-point comparison, it is possible to determine 
the storage and loss moduli using the area of the stress-strain curves especially under large strains30. Even though 
the Kelvin-Voigt model does not consider the stress relaxation in the carbon-filled elastomers under large strain 
amplitudes, it is used here due to its simplicity and wide application in engineering. For further research, the 
Maxwell-Wiechert model or Bouc-Wen model can also be applied. The statistical measures provided in Table 2 
shows that the fitted numerical stresses using the obtained moduli are in a complete agreement with the corre-
sponding experimental stresses, and the moduli can be used for further analysis.

The crude experimental results of the storage and loss moduli are summarized and demonstrated in Fig. 5. 
The calculated moduli under the same frequency and strain amplitude for the two test specimens were quite close 
and they were averaged and reported as mean moduli. It is observed at the first sight that the influence of strain 
amplitude is significant on both storage and loss moduli, and the frequency has a relatively subtle effect on the 
moduli compared to the strain amplitude. The frequency has a slight influence on the storage modulus and can 
increase it more clearly at smaller strain amplitudes. In contrast, the strain amplitude γ0 can significantly affect the 
storage modulus, and the effect of loading frequency on the loss modulus is more noticeable. Similar to the stor-
age modulus, the strain amplitude considerably affects the loss modulus. Increase in the strain amplitude results 
in considerable decrease in the storage and loss moduli, which is the well-known Payne effect8,9,31. The effects of 
frequency on the loss modulus is more tangible and it has a slight nonlinearity, but in general the load frequency 
has a relatively linear effect which is also negligible at higher strain rates. The relation between the strain ampli-
tude and the moduli is completely nonlinear, and changes in strain amplitude at higher values have subtle effects 
on the moduli. Taking into account these relations is essential to properly generate the response surface function 
in the next section.

Numerical Assessment
Response surface.  Different methods and techniques32 can be utilized to approximate the response surface 
function. These methods include response surface methodology33, Bayesian networks34,35, neural networks36,37, 
and other machine-learning techniques38,39 which have been implemented in material science. The main advan-
tage of machine-learning techniques is that many of them are non-parametric and a priori equations are not 
required to describe the response of interest. However, the response surface methodology provides a great sim-
plicity and it can be easily treated while deriving a closed-form solution. The approximated response surface can 
be directly studied and it sometimes need a smaller number of samples compared to probabilistic machine-learn-
ing methods.

In the present research, the response surface methodology is utilized. Full-quadratic functions of two inde-
pendent variables were considered to approximate the response surface functions of the moduli. It should be 
mentioned that the response surface methodology is an approximate technique, and thus the use of it does not 
necessarily imply that the relations between the moduli and input parameters are quadratic or linear against 
another parameter. It was observed that the second-order terms for frequency and its interaction with strain 
amplitude are redundant with p-values greater than the significance level α of 0.05. Therefore these terms were 
omitted to reach low-order polynomials to avoid overfitting and this complies with the observed experimental 
data described in the previous section. As was observed in experimental results, the relation between the moduli 
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Figure 5.  (a) Mean storage modulus G′ versus load frequency at different strain amplitudes; (b) Mean loss 
modulus G′′ versus frequency at different strain amplitudes.
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and frequency is almost linear while it is nonlinear for the strain amplitude. Accordingly, the response function 
can be approximated by,

γ γ′ = . + . − . + .G fMPa 1 8654 0 2657 2 6630 1 274 , (4)0 0
2

γ γ″ = . + . − . + .G fMPa 0 6771 0 1710 1 1059 0 5687 , (5)0 0
2

where f is load frequency and equal to ω
π2

. The p-value for all terms are zero which implies that the effects of these 
terms are significant except the frequency for the storage modulus which is 0.009 and much lower than 0.05. More 
detailed statistics for checking the accuracy of the models are summarized in Table 3. The standard deviations of 
the difference between the data points and the fitted values are denoted as S, which are adequately small compared 
to the values of the moduli. The values for coefficient of determination r2 are greater than 90%, which shows that 
the fitted response surface functions have enough accuracy. Since there is no much difference between r2 and the 
adjusted r2, it is ensured that the data are not overfitted and the high predicted r2 prove the capability of predicting 
for the response surface functions. The approximated response surfaces of the moduli and their observed data 
points with the normality test of residuals are shown in Fig. 6. It can be seen that the generated functions can 
adequately approximate the response surfaces.

The intercepts of the response surface functions, i.e. G′ = 1.86 MPa and G′′ = 0.68 mpA, show the amount of 
damping properties for low frequencies and small strain amplitudes. These values can be slightly increased by the 
first-order terms of frequency which are called the main effects. The main effects of strain amplitude on the mod-
uli are negative, thus decreasing the damping properties. Due to the positive second-order term of strain ampli-
tude, this effect is nonlinear and by increasing the strain amplitude, its influence is decreased. It is worthwhile to 
mention that based on the response surface functions, there is no noticeable interaction between the frequency 
and strain amplitude in the considered experiment domain. As mentioned earlier, the interaction terms of the 
fitted response surface were omitted due to their high p-values which show their insignificancy and redundancy 
to the estimated model.

Property S (MPa) r2 (%) adjusted r2 (%) predicted r2 (%)

Storage modulus 0.117 93.6 93.1 91.9

Loss modulus 0.053 91.2 90.5 89.1

Table 3.  Checking accuracy of the response surface functions.
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Figure 6.  Fitted response surfaces of the moduli, observed data points and the normality test of their residuals: 
(a) Storage modulus G′. (b) Loss modulus G′′. In spite of three outliers for each modulus related to high strain 
amplitudes, the normality tests of residuals show that there is no heteroscedasticity and the error is consistent 
for all the observed data. Hence, the fitted response surfaces can approximate the moduli with the same 
predictability all over the range of the experiment.
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Sensitivity analysis.  The abovementioned effects on the viscoelasticity can be quantified all over the experi-
ment domain by a derivative-based global sensitivity which is called the Morris method25. In general, this method 
is performed using the Monte Carlo simulation; however, a closed form solution is derived in this study using the 
response surface functions. In this method, random samples are chosen from the input space. For each sample 
point, one input variable at time is subjected to an infinitesimal perturbation and the first-order derivatives of 
the function is calculated using the finite-difference method. The function is perturbed with respect to next input 
variables successively which characterize an infinitesimal trajectory. The first-order derivative for each variable is 
obtained at the sample point, which is called the elementary effect40,41 and the procedure is repeated for all sam-
ples. The mean elementary effect μ for each variable all over a considered domain is the first parameter of interest. 
Since the elements can cancel out each other, the mean absolute elementary effect μ* is usually determined. Using 
a closed-form solution, μ* for the effect of frequency on the storage modulus as an example can be determined by

μ
γ

γ=
∂ ′
∂

=
∂ ′
∂

∬∬
⁎ G

f dfd
G
f

dfd1 ,
(6)U

U0
0

where U is the experiment domain. This parameter quantifies the average rate of change in the storage modulus 
due to the frequency all over the domain of the response surface. Since the response surface functions are numer-
ically approximated and available, the above mentioned definite integral can be easily calculated for both moduli 
and either frequency or strain amplitude. The standard deviation of elementary effects is the second important 
parameter, and shows the nonlinearity of changes in the response surface with respect to an input variable. As an 
example, σ for the frequency and the storage modulus is obtained by
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which is equal to zero for frequency here due to the linearity of the response surface function with respect to this 
parameter. The results of the sensitivity analysis is shown in Table 4.

The results of the sensitivity analysis show that the rates of the change in the storage and loss moduli to change 
in the frequency are on average .0 266 MPa

Hz
and .0 171 MPa

Hz
, respectively. According to the standard deviation, 

these rates do not change in the range of the experiment characterized by the fitted response surface functions. 
Compared with the frequency, the effects of the strain amplitude are much more significant. The average rates of 
change in the storage and loss moduli due to the strain amplitude are respectively 3.91 and 2.46 times the effects 
due to the frequency. It was observed in the previous sections that the strain amplitude decreases the moduli, and 
it is found that for a unit increase in the strain amplitude, the storage and loss moduli decrease on average by 
.1 041 MPa

1
 and .0 420 MPa

1
, respectively. These rates can vary with the standard deviations of .0 809 MPa

1
 for the 

storage modulus and .0 361 MPa
1

 for the loss modulus. Based on the previous assessment, it is clear that the rate of 
change is high at small strain amplitudes and becomes less effective at higher strain rates. It is worthwhile to men-
tion that the rates of change in the effects of strain amplitude and frequency are determined in this study, and 
should not be misunderstood with the effects themselves. These statistics can sufficiently and quantitatively 
describe the effects of frequency and strain amplitude on the viscoelasticity, and provide detailed insights not only 
into the mechanical behavior of the tested VEM, but also other VEMs with similar specifications.

Concluding remarks.  In the present research, the effects of loading frequency and shear strain amplitude on 
the damping properties of a viscoelastic polymer composite material were evaluated and quantified using cyclic 
loading tests and numerical methods. Two specimens were prepared and tested under 3 frequencies and 7 strain 
amplitudes. The material specifications and instrumentation of the experiment were described in detail and the 
experimental results for the storage and loss moduli were discussed. The numerical assessment of these effects 
were carried out using the response surface methodology and a derivative-based global sensitivity analysis called 
the Morris method. The response surfaces of the storage and loss moduli were approximated using quadratic 
functions and their accuracy were ensured using statistical measures. These functions were studied and further 
utilized to derive a closed-form solution for quantitative assessment of frequency and strain amplitude effects.

The results showed that the shear strain amplitude had significant effects on the moduli and mechanical 
behavior of the considered viscoelastic material. On the other hand, the loading frequency is less effective com-
pared to the strain amplitude. Based on the response surface functions, it was observed that there was no notice-
able interaction effects between the frequency and the strain amplitude on the moduli. Based on the results of the 
sensitivity analysis, the rates of the change in the storage and loss moduli to change in the frequency were on 
average .0 266 MPa

Hz
and .0 171 MPa

Hz
, respectively. For a unit change in the strain amplitude, the storage and loss 

Property Frequency Strain amplitude

µ⁎ ( )MPa
Hz σ ( )MPa

Hz µ⁎ ( )MPa
1 σ ( )MPa

1

Storage modulus 0.266 0 1.041 0.809

Loss modulus 0.171 0 0.420 0.361

Table 4.  Morris method parameters for the damping properties of the VEM.
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moduli decreased on average by .1 041 MPa
1

 and .0 420 MPa
1

, respectively. These rates changed over the experiment 
domain with the standard deviations of .0 809 MPa

1
 for the storage modulus and .0 361 MPa

1
 for the loss modulus.

It should be noted that the conclusions drawn here are based on the data obtained at the test domain, and 
might be changed for data obtained out of this range. However, the experimental results, approximations, and 
quantitative measures provided in this research can be used for practical applications, and the discussed methods 
can give insight into the further research on viscoelastic polymer composites.

Methods
Fitting the Kelvin-Voigt model to the experimental data was performed using the generalized reduced gradient 
algorithm provided by the Solver add-in of Microsoft Excel, and the data were provided as supplementary infor-
mation files to ensure reproducibility. Conducting the statistical analyses on the data was done using MATLAB 
and the response surface functions were created and evaluated using the Minitab statistics package.

Data availability
The authors declare that the experimental datasets used in the present study and fitted numerical results using the 
Kelvin-Voigt model are available online as supplementary information files with this paper.
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