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a b s t r a c t

This study proposed a simple design procedure for determining the required damping force of a friction
damper installed in a single-story structure. The analysis model was transformed into an equivalent
mass-spring-dashpot system by approximating a nonlinear Coulomb damping force with an equivalent
viscous damping force. A closed form solution for the dynamic magnification factor (DMF) for a steady-
state response was derived using the energy balance equation. The equivalent viscous damping ratio was
defined using the DMF at the natural frequency. The transfer function between input harmonic excitation
and output structural response was obtained from the DMF, and the response reduction factor of the root
mean square (RMS) of displacements with and without friction dampers was analytically determined.
Using the proposed procedure the friction force required for satisfying a given target response reduction
factorwas obtained. The response reduction factorswere obtained for the structureswith different natural
frequencies subjected to ten earthquake records. Based on the dynamic analysis results, it was concluded
that the mean response reduction factors matched well with the target values.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Friction dampers are considered as one of the most efficient
energy dissipation devices for structures against an earthquake
load. Compared with velocity-dependent devices such as vis-
cous and viscoelastic dampers, friction dampers can provide suf-
ficient initial stiffness as well as energy-dissipation capacity. A
lot of research have been carried out to investigate the energy-
dissipating capacity of friction dampers and to propose a proper
design procedure. Energy dissipations of slotted bolted friction
dampers were investigated numerically and experimentally [1,2].
Fu and Cherry [3] studied the application of a quasi-static de-
sign procedure for a friction damped system. They also pro-
posed a code-based seismic design procedure for friction damped
frames [4]. Mualla and Belev [5] proposed a friction damping de-
vice (FDD) and carried out tests for assessing the friction pad ma-
terial, damper unit performance and scaled model frame response
to lateral harmonic excitation. Moreschi and Singh [6] presented a
methodology to determine the optimal design parameters for the
devices installed at different locations in a building for a desired
performance objective. Bhaskararao and Jangid [7] proposed nu-
merical models of friction dampers for multi degree of freedom
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(MDOF) structures and validated the results with those obtained
from an analytical model. A new equivalent linearization tech-
nique was proposed for a friction damper–brace system based on
the probability distribution of the extreme displacement [8]. Lee
et al. [9–11] proposed the design methodology for a combined
system of bracing and friction dampers for the seismic retrofit of
structures, and assessed the vibration control effect quantitatively
by evaluating the equivalent damping ratio of a structure with
supplemental damping devices. Marko et al. carried out compar-
ative studies of the response of shear wall structures with friction
dampers, viscoelastic dampers and combined friction–viscoelastic
dampers subjected to earthquakes [12]. They demonstrated the
feasibility of mitigating the seismic structural response with em-
bedded dampers. Ribakov demonstrated a method to improve the
seismic behavior ofMDOF buildings by applying a variable stiffness
friction damped system [13]. Recently Kim et al. [14] investigated
progressive collapse performance of structures installedwith rota-
tional friction dampers. Most of the previous studies were gener-
ally carried out by using finite element analysis tools for analysis
of structures installed with friction dampers. This provides quanti-
tative information about structural responses and damper behav-
ior, but not insight into the physical behavior and effect of friction
dampers. In this regard a simple design and performance evalua-
tion process for friction dampers mounted on building structures
are required to evaluate the effectiveness and economy of damper
installation.

0141-0296/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2010.07.022
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The present study is intended to propose a simple design
process to determine a desired control force of a friction damper
to satisfy a given target performance of a structure subjected to
an earthquake ground excitation. The energy balance of input
loading and output building motion is investigated to identify the
building–damper system under steady-state behavior. A closed
form solution for the dynamic magnification factor (DMF) is
derived by assuming that the friction damped building structure
shows steady-state response, and that the Coulomb damping
force can be replaced by equivalent viscous damping force. A
straightforward methodology is suggested to assess the control
efficiency of a friction damped building structure under an
earthquake ground excitation bymodifying theDMF into a transfer
function. Then the response reduction factor of the root mean
square (RMS) of displacements with and without friction dampers
is found analytically. Finally a design procedure is proposed to
determine the required damping ratio and friction force to satisfy
a given target response reduction factor. Numerical dynamic
analyses are carried out to check the validity of the proposed
procedure.

2. Closed form solution for a dynamic magnification factor

Friction dampers are generally installed between stories to
reduce inter-story displacements of structures as shown in Fig. 1.
They generate damping forces characterized by Coulomb damping,
the direction of which is opposite to structural motion. The
equation of motion of a single-story structure with a friction
damper is represented by

mü + cv u̇ + ku + fdsgn (u̇) = p(t) (1)

where m, cv , and k are the mass, viscous damping constant, and
stiffness of a structure, respectively; u, u̇, and ü are the inter-
story displacement, velocity, and acceleration of the structure,
respectively; fd and p(t) are, respectively, the friction force of a
damper and external loading, which is −müg where üg is the
earthquake ground acceleration; sgn(u̇) is the symbolic function
defined as −1, 0 and 1, respectively in case u̇ < 0, u̇ = 0
and u̇ > 0. To find an exact solution of Eq. (1) is dependent
on the form of the external load p(t). It is nearly impossible to
obtain an analytical solution for a randomly excited load such as an
earthquake, and generally a numerical approach is applied instead.
Den Hartog [15] and Hundal [16] provided an analytical solution
for Eq. (1) by assuming that the structure with a relatively small
friction force shows a steady-state response for harmonic loading.
Den Hartog also addressed continuous and stop motion of a mass
with combined viscous and Coulomb damping. Hundal found the
solution for a structure subjected to a harmonic base excitation.
Feeny [17,18] and Liang [19] identified Coulomb and viscous
dampings from free-vibration decrements. Previous studies were
carried out based on the premise that friction force is small
compared to harmonic loading or the structure with a friction
damper undergoes free-vibration. If not, the structure behaves
with a stopmotion and no longer shows harmonic response. In this
case a numerical approach should be applied to derive the solution
for the equation ofmotion, which does not give any insight into the
vibration characteristics.

This study first revisited previous approaches for identifying a
building structure installedwith a friction damper under harmonic
excitation for reducing steady-state response. By equating the
dissipated energy by a friction damper with the energy dissipated
by viscous damping for one cycle, a friction damping force can be
replaced by an equivalent viscous damping force [20]. As a result,
the equation ofmotion of a single degree of freedom (SDOF) system

Fig. 1. A single-story structure installed with a friction damper subjected to an
earthquake load.

with an equivalent viscous damping subjected to a harmonic force
can be represented as

mü + (cv + ceq)u̇ + ku = F0 sinωt (2)

where ceq, F0, and ω are the equivalent viscous damping constant,
amplitude of harmonic loading, and angular loading frequency,
respectively. Eq. (2) can be transformed into the following energy
balance equation by multiplying a differential displacement and
integrating over the entire displacement [20]:

EK + Ev + Eeq + ES = EI (3)

where EK , Ev, Eeq, and ES are the kinetic energy, viscously
dissipated energy, equivalently dissipated friction energy, and
strain energies, respectively; and EI is the input energy from the
external harmonic loading. Since changes in kinetic and strain
energies over one cycle are zero for steady-state response, the sum
of Ev and Eeq over one cycle is equal to the input energy, EI , which
yields

π(cv + ceq)ωu2
0 = πF0u0 sinφ (4)

where u0 is the amplitude of dynamic displacement and φ is the
phase angle. The maximum values of the input loading and the
output displacement occur with the difference of the phase angle.
Expressing Eq. (4) in terms of ξv, ξeq and ωr leads to

2kπ(ξv + ξeq)ωru2
0 = πF0u0 sinφ (5)

where ξv, ξeq and ωr are, respectively, the viscous damping ratio,
equivalent viscous damping ratio due to friction damping, and the
frequency ratio which is the excitation frequency normalized by
the natural frequency. The phase angle φ is computed as φ =

tan−1 2ωr(ξv+ξeq)
1−ω2

r
and thus sinφ is obtained as

sinφ =
2(ξv + ξeq)ωr

(1 − ω2
r )

2 + {2(ξv + ξeq)ωr}
2
 1
2
. (6)

The energy dissipated by a friction damper over a cycle is 4fdu0.
Equating this to the equivalent viscous damping energy πceqωu2

0
leads to Eq. (7) [20]:

ξeq =
2fd

πkωru0
. (7)

Substituting Eq. (6) into Eq. (5) leads to

u0

F0/k
=

1
(1 − ω2

r )
2 + {2(ξv + ξeq)ωr}

2
 1
2
. (8)

Since u0 exists in ξeq, as shown in Eq. (7), rearranging Eq. (8) leads
to the following quadratic equation in terms of u0:

A1u2
0 + 2A2u0 + A3 = 0 (9)
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Fig. 2. DMFs with various ωr ’s and Fr ’s when ξv = 0.01.

where A1 = (1 − ω2
r )

2
+ (2ωrξv)

2, A2 =
8ωr ξv fd

πk , and A3 =


4fd
πk

2

−


F0
k

2
.

Solving Eq. (9) for u0 and dividing it by the static displacement
ust , which is F0/k, leads to the following form of the DMF:

DMF =
u0

ust
=

−
 8

π


ωrξvFr +


α2

+ 4ω2
r ξ

2
v −

 4
π
αFr

2 1
2

α2 + (2ωrξv)2
(10)

where Fr is the friction force ratio fd/F0 andα is defined as (1−ω2
r ).

As u0 is always positive, the following relationship holds from
Eq. (10):

α2
+ 4ω2

r ξ
2
v −


4
π

αFr

2
 1

2

>


8
π


ωrξvFr . (11)

Rearranging Eq. (11) leads to

Fr <
π

4
. (12)

In addition, noting that the term inside the square root in Eq. (10)
is always positive leads to

Fr <
π

4


1 +


2ωrξv

1 − ω2
r

2
 1

2

. (13)

Since the right-hand side of Eq. (13) is greater than π/4, Eq. (12)
becomes a governing inequality condition.

As the DMF in Eq. (10) depends on Fr , ωr and ξv , they are
illustrated in Fig. 2 with various ωr ’s for several values of Fr in the
case of ξv = 0.01. Note that as ωr approaches 1.0, the magnitude
approaches a maximum value for all curves of Fr . The magnitude
increases as Fr decreases. As the amplitude of the steady-state
vibration is affected by changing the damping ratio, it is expected
that Fr takes the role of the damping ratio. In case ξv is zero,
Eq. (10) is simplified as

DMF =


1 −

 4
π
Fr

2 1
21 − ω2

r

 (14)

which is identical to the form derived by Den Hartog [15]. At
resonance, i.e. ωr = 1, the DMF in Eq. (10) becomes

DMF =
1 −

4
π
Fr

2ξv

. (15)

As can be observed in Eq. (15), the steady-state response is
guaranteed only when there exists ξv . If ξv is zero, the DMF
becomes infinite, which means that input energy is greater than
the energy dissipated by the friction damper.
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Fig. 3. Fr for various ξeq,app/ξv ’s.

3. Approximate equivalent viscous damping ratio

The equivalent damping ratio presented in Eq. (7) can be re-
expressed as follows using Fr and the DMF:

ξeq =
2
π
Fr

1
DMF

1
ωr

. (16)

Note that the equivalent damping ratio is proportional to Fr and is
inversely proportional to the DMF and ωr . Fig. 2 plots the dynamic
magnification factor, DMF, vs. the frequency ratio, ωr , for various
friction force ratios, Fr . Since the DMF is narrow banded with its
peak occurring at the natural frequency as observed in Fig. 2, ξeq in
Eq. (16) can be simplified as an approximate equivalent damping
ratio ξeq,app by using the DMF in Eq. (15) at ωr = 1:

ξeq,app =
Fr

(π/4) − Fr
ξv. (17)

Note that ξeq,app is related to both Fr and ξv . Rewriting Eq. (17)
yields the following equation for the friction force ratio:

Fr =
π

4

ξeq,app
ξv

1 +
ξeq,app

ξv

. (18)

It can be observed that Fr depends on the ratio of the approximate
equivalent damping ratio and the viscous damping ratio, which is
ξeq,app/ξv . Fig. 3 shows the relationship between the friction force
ratio, Fr , and the ratio of the approximate equivalent damping and
the viscous damping. It can be seen that for lower ξeq,app/ξv, Fr
increases very rapidly, whereas for larger ξeq,app/ξv, Fr approaches
π/4 asymptotically. Fig. 4 compares the approximate DMF,
obtained by substituting ξeq,app into Eq. (8) in place of ξeq, with
the DMF obtained using the closed form equation of Eq. (10). It can
be noticed that the approximate DMF matches quite well with the
exact solution especially when the friction force ratio is small. The
discrepancy increases as the friction force ratio increases. However
the difference between the approximate and the exact solutions
is considered to be acceptable in the preliminary design stage of
friction dampers.

Additional equivalent damping ratios contributed by a friction
damper are obtained by three methods; Eq. (17) is proposed in
this study, closed form DMF using half power band-width method,
and approximate DMF using half power band-width method, as
shown in Fig. 4. The method using the DMF gives a total damping
ratio including viscous damping ratio ξv = 0.01 inherently in
the structure and friction damper contribution. The total damping
ratio is also obtained by adding an equivalent damping ratio in
Eq. (17) to the viscous damping ratio. The total damping ratios for
various values of friction force ratios are compared in Fig. 5. The
total damping ratios corresponding to the approximate DMF are
quite similar to those obtained by Eq. (17), since both utilize the
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Fig. 5. Comparison of total damping ratios.

same strategy in formulation. They are larger than those obtained
using the closed form solution, apparently for larger Fr . This can be
explained in Fig. 4 inwhich the closed formDMF shows a narrower
peak than the approximate DMF.

4. Design procedure of a friction damper

To estimate the response of a structure subjected to a random
excitation such as an earthquake ground excitation, the frequency
contents of the excitation and the transfer function between the
excitation and the response need to be known. The mean square
response is obtained by integrating the power spectrum of the
response over the frequency range of interest, which consists of
themultiplication of the transfer function and the power spectrum
of the excitation. The behavior of a friction damper is inherently
nonlinear and thus its transfer function cannot be obtained.
In this study, however, it is assumed that the friction force is
small compared with the amplitude of harmonic loading and the
steady-state vibration is ensured. Based on this assumption, the
approximate equivalent viscous damping ratio is obtained using
only the friction force ratio, Fr and the viscous damping ratio ξv , as
shown in Eq. (17).

Physical insight into response reduction as a result of damper
installation can be provided by observing damping ratio rather
than friction force contributed by the friction damper. For design
purposes, the damping ratio to be supplied by the damper to
achieve a target performance, which is denoted as ξtarget, can be
prescribed regardless of Fr and ξv . With this inmind, the amplitude
of the dynamic displacement obtained in Eq. (8) can be modified
into the following equation using the transfer function, H(ω),
obtained as follows:
u0 = H(ω)F0 (19)

H(ω) =
1

k

(1 − ω2

r )
2 +


2(ξv + ξtarget)ωr

2
 1

2
. (20)
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Fig. 6. ξtarget for various Jf ’s.

The right-hand side terms in Eqs. (8) and (20) are almost the
same, but their interpretations are different. The former includes
magnitude of excitation, F0 in ξeq, and therefore cannot be regarded
as a transfer function. The latter, however, is considered as a
transfer function by prescribing ξtarget regardless of F0.

The mean square displacement is obtained by integrating the
displacement power spectrum over all frequency range. For a
lightly damped structure, the contribution of the response power
spectrum is large in the neighborhood of the natural frequency of
the structure, and is very small outside of this frequency region.
Based on this observation, the power spectrum of the excitation
at the natural frequency can be considered as constant without
introducing significant error in the final results [21]:

σ 2
f = S(ωn)

∫
∞

−∞

|H(ω)|2 dω (21)

where σf and S (ωn) are, respectively, the mean displacement and
the power spectrum of the excitation at the natural frequency, ωn.
Substituting Eq. (20) into Eq. (21) andperforming integration result
in

σ 2
f =

π

2
S (ωn)

2(ξv + ξtarget)m2ω3
n
. (22)

The mean square displacement without a friction damper is
easily obtained by substituting zero in ξtarget. The vibration control
effect of the damper is defined by normalizing Eq. (22) with the
mean square displacement obtainedwithout a friction damper and
taking a square root, which is

Jf =


1

1 +
ξtarget

ξv

. (23)

The formulation is based on the assumption that the friction
force is small compared with the amplitude of harmonic loading
and the relationship between the input force and the output
response is linear, which is expressed with the transfer function,
H(ω) in Eq. (20). Tolis and Faccioli [22] utilized a series
of earthquake records to obtain reliable structural responses
considering the inelastic behavior of a structure. They calculated
displacement spectra for various intrinsic damping ratios, which
indicates that the damping ratio affects the spectral responses
significantly. Since Eq. (23) is obtained by the process that mean
square displacement with friction damper is normalized by the
mean square displacement obtained without a friction damper, it
is governed by the ratio ξtarget/ξv , not by the intrinsic damping
ξv . Even though the proposed procedure has the limitation that it
does not consider the characteristics of specific earthquakes and
dynamic properties of a structure such as the natural frequency
and intrinsic damping ratio, the limitation can be compensated for
by the simplicity and convenience in designing a friction damper in
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Fig. 7. Flowchart of mathematical derivation procedure and relationship of each part.

the preliminary design stage to achieve a target response reduction
factor.

The response reduction factor, Jf , is composed of the ratio of
the target damping and the inherent viscous damping ratios. It
can be deduced that the displacement response reduction factor
presented in Eq. (23) is the same as the response reduction factors
for the velocity and the acceleration, since the friction damper
affects the damping ratio only. It is appropriate to reorganize Eq.

(23) in terms of the response reduction factor to obtain ξtarget:

ξtarget =
1 − J2f
J2f

ξv. (24)

For the design of a friction damper the response reduction factor is
prescribed first and then the corresponding target damping ratio is
determined using the above equation.
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Generally the larger the damper friction force becomes, the
better control performance can be achieved. However, a larger
friction force or more friction dampers will lead to higher cost.
There has to be a trade-off between cost and control effectiveness.
Fig. 6 plots the variation of the target equivalent damping ratio as
a function of the response reduction factor. The design of a friction
damper is to select a proper friction force required for satisfying
a desired control performance. The target effective damping ratio
ξtarget corresponding to a given Jf can be found in the figure. Once
the target damping ratio, ξtarget is obtained, Fr is found by using
Eq. (18) with ξtarget in place of ξeq,app. The required friction force
fd is then obtained using the relation Fr = fd/F0, where F0 is the
amplitude of harmonic excitation.

When deriving Eq. (21), the response power spectrum was
assumed to be large in the neighborhood of the natural frequency
of the structure. For ideal white noise excitation, F0 is the Fourier
transform of the excitation at the natural frequency. For an
earthquake excitation, however, its Fourier transform is very
irregular along the frequency and therefore it is meaningless to
choose F0 at the natural frequency. Instead, the average of the
Fourier transform in the vicinity of the natural frequency is used
in this study. As there is no criterion to select proper range of
frequency around the natural frequency the half-power points are
adopted for identifying bandwidth of frequency for obtaining the
average value of F0, which is denoted as F0,average [23].

The flowchart illustrated in Fig. 7 summarizes the design pro-
cedure for friction dampers, in which the friction force corre-
sponding to a desired response reduction factor can be obtained.
The design procedure provided in the flowchart consists of four
parts; Part 1 is for the equivalent viscous damping ratio, Part 2
for the DMF, Part 3 for the response reduction factor, and Part 4
for the verification of a designed damper. Each part is connected to
one another; for example, the approximate DMF obtained in Part 2
is used to obtain an approximate equivalent viscous damping ra-
tio and friction force ratio in Part 1; the target damping ratio ob-
tained from the response reduction factor in Part 3 is used to obtain
the friction force ratio in Part 1; and the amplitude and frequency
content of earthquakes and the natural frequency of the structure,
which are used for F0,average in Part 4, are considered in deriving the
designed friction force. Thus the four parts are interconnectedwith
each other, as shown in the flowchart.

Eq. (18) provides the friction force ratio expressed with an
approximate equivalent viscous damping ratio, which is obtained
from Eq. (17). The advantage of these equations is that the relation
between friction force ratio (or friction force) and equivalent
damping ratio is derived analytically. Eqs. (23) and (24) are derived
based on the random vibration strategy for the SDOF structure
with the increasing damping ratio of the system. The friction
force ratio in Eq. (18) is introduced by substituting the target
damping ratio in Eq. (24) into the equivalent damping ratio in
Eq. (18). Once the friction force of a damper is found by the
proposed procedure, nonlinear numerical time history analysis is
performed, and the analysis results for response reduction factors
are compared with the target response reduction factors to verify
the proposed procedure. The proposed procedure for the design of
a friction damper is summarized as the following steps:

Step 1: Select a desired response reduction factor Jf .
Step 2: Obtain target damping ratio ξtarget using Eq. (24).
Step 3: Obtain friction force ratio Fr using Eq. (18) with ξtarget in

place of ξeq,app.
Step 4: Determine mean values of F0 and F0,average considering

the natural frequency of the structure and specific earthquake.
Step 5: Obtain a friction force from Fr × F0,average.
Step 6: (Optional) Verify control performance of the designed

friction damper by carrying out nonlinear time history analysis.
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Fig. 9. F0,average for a single-story structure with fn = 0.5 Hz under 10 seismic
records.

5. Verification of the proposed design procedure

The previous section dealt with the process for designing
a friction damper to satisfy a given target response reduction
factor. The process first began with prescribing a target response
reduction factor considering a trade-off between damper cost and
control effectiveness. Then the corresponding target equivalent
damping ratio was chosen, and finally the required friction force
tomeet the target performancewas obtained. In order to verify the
proposed process, numerical time history analysis of a single-story
structure installedwith a designed friction damperwas carried out
for 10 seismic records, which are the El Centro (EC), Kobe (KO),
Mexico (ME), Northridge (NO), Hachinohe (HA), State Building (ST),
Park Field (PF), Helena (HE), Pacomia (PC), and Lytle Creek (LC)
earthquakes. The natural frequency of the single-story structure is
varied from 0.1 to 1 Hz at intervals of 0.1 Hz. The friction force ratio
Fr and the response reduction factor Jf are governed by ξeq,app/ξv

and ξtarget/ξv , respectively, not by ξv as shown in Eqs. (18) and (24),
respectively. The proposed procedure begins with the selection
of the response reduction factor Jf and the computation of the
target damping ratio ξtarget which is linearly proportional to ξv .
In this paper the inherent viscous damping ratio of 0.01 is used
throughout the study. Following the proposed step, the friction
force ratios are obtained for various response reduction factors, Jf ,
and are plotted in Fig. 8. The next step is to obtain F0,average which
is defined in this study as the average of the Fourier transform in
the vicinity of the natural frequency. Structural seismic response
depends on its natural frequency and earthquake excitation, which
is considered in computing F0,average. Fig. 9 shows the variation
of F0,average depending on the earthquake records used for input
excitation at the natural frequency fn = 0.5 Hz, where fn is
2πωn. Fig. 10 plots F0,average of the structure with ten different
natural frequencies obtained for El Centro earthquake. The figures
show that F0,average varies depending on both natural frequency and
earthquake record.

Once the response reduction factor Jf is given, target damping
ratio ξtarget can be found using Eq. (24). Then friction force ratio



Author's personal copy

K.-W. Min et al. / Engineering Structures 32 (2010) 3539–3547 3545

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fn

200

300

400

500

600

700

800

900

1000

1100

1200

Fig. 10. F0,average for a single-story structure with various fn ’s under the El Centro
earthquake.
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Fig. 11. Designed friction damper forces for a single-story structure with fn =

0.5 Hz under the El Centro earthquake.
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Fig. 12. Designed friction damper forces for a single-story structure with various
fn ’s and Jf = 0.8 under the El Centro earthquake.

is easily found using Eq. (18), which is a function of ξtarget/ξv ,
not ξtarget. The next step is to determine the friction damper
force, which satisfies the target response reduction factor for
the structure with a specified natural frequency and earthquake.
Fig. 11 shows the designed friction force for the structure with
fn = 0.5 Hz under the El Centro earthquake for various response
reduction factors Jf . Fig. 12 shows the designed friction force for the
structurewith Jf = 0.8Hz subjected to the El Centro earthquake as
a function of the natural frequency fn. It can be observed that as the
natural frequency increases the designed friction force generally
increases.

Fig. 13 present the time history analysis results for dis-
placements and accelerations obtained with and without friction
damper. Time history analysis of the model structure was per-
formed for two cases, i.e., for the model without a friction damper
(fd = 0), and for the model with the friction damper with fd =

544.6 N corresponding to the given control ratio Jf = 0.5. The
structure was modeled using an equivalent mass-spring-dashpot
model with m = 5102 kg, ξv = 0.01, and k = 805.7 kN/m as
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Fig. 13. Response reduction factors for a single-story structure with fn = 0.2 Hz.
(a) Target response reduction factor Jf = 0.7. (b) Target response reduction factor
Jf = 0.8. (c) Target response reduction factor Jf = 0.9.

the mass, viscous damping ratio, and stiffness for the structure,
respectively. The north–south component of the El Centro earth-
quake was applied for dynamic analysis of the model. The target
control ratio Jf of the mean displacement was selected to be 0.5.
This led to the target damping ratio and the friction force ratio
ξtarget = 0.03 and Fr = 0.589. Themean value of the Fourier trans-
form of the El Centro earthquake using the half power points was
found to be 18.12 gal. The Fourier transform of the excitation in the
neighborhood of the natural frequency F0 was calculated as 924.5N
bymultiplying 18.12 gal with themass of themodel. Finally the re-
quired damping force fd is obtained as 544.6N. It can be observed in
the analysis results that the friction damper is effective in reducing
both the displacement and acceleration responses.

The response of a structure with friction dampers depends on
magnitude of the input earthquake and dynamic properties, espe-
cially natural frequency. In order to demonstrate the feasibility of
the proposed design procedure of friction dampers, numerical dy-
namic analysis was performed to obtain response reduction fac-
tors. Ten different earthquakes mentioned above were applied for
seismic analysis of a single story structure with ten different natu-
ral frequencies. Nonlinear time history analysis of Eq. (1) was car-
ried out with m = 5102 kg and ξv = 0.01 with and without the
designed friction damper. The equation for the response reduction
factor shown in Eq. (23)was derived based on the rootmean square
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Fig. 14. Response reduction factors for a single-story structure with fn = 0.5 Hz.
(a) Target response reduction factor Jf = 0.7. (b) Target response reduction factor
Jf = 0.8. (c) Target response reduction factor Jf = 0.9.

of the displacement for stationary random process [21]. Even if
temporal mean values were found using only one sample with fi-
nite duration, they could be an index to represent control perfor-
mance. The temporalmeanvalues of the timehistories,whichwere
obtained by numerical nonlinear dynamic analysis of the struc-
ture with a friction damper, were used in place of the root mean
square of responses. The temporal means of the responses of the
controlled structure were normalized by those of the uncontrolled
one for comparing with the given target response reduction factor.
Since the response obtained by using a single earthquake record is
not representative from a statistical view point, the response re-
duction factors obtained by time history analyses using ten earth-
quake records were averaged and compared with corresponding
target factors. Through the analysis the response reduction fac-
tors for various target reduction factors, natural frequencies, earth-
quakes, and viscous damping ratios were obtained.

The structures with natural frequencies fn = 0.2, 0.5 and
0.8 Hz, and inherent damping ratio ξv = 0.01 subjected to
ten earthquakes were analyzed. The friction damper forces were
computed for Jf = 0.7, 0.8 and 0.9, and the analysis results
were illustrated in Figs. 14 and 15. The mean and target values
for the response reduction ratio were also shown in the figures.
It can be observed in Fig. 14 that a control effect was achieved
for most of the earthquake records by installing a designed
friction damper in the structure with a natural frequency of 0.2.
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Fig. 15. Response reduction factors for a single-story structure with fn = 0.8 Hz.
(a) Target response reduction factor Jf = 0.7. (b) Target response reduction factor
Jf = 0.8. (c) Target response reduction factor Jf = 0.9.

In the structures with natural frequencies of 0.5 and 0.8 Hz,
the mean responses are closer to the target values. However
the damper was not so effective for some earthquake records,
especially for El Centro (EC) and Kobe (KO) earthquakes, as shown
in Fig. 15. This implies nonlinear performance of friction damped
structures, where structural response depends on the natural
frequency and input earthquake load. However themean response
reduction factors turned out to be close to the target response
reduction factors of 0.7, 0.8 and 0.9, respectively. The analysis
results demonstrate the feasibility of the proposed simple design
procedure to mitigate seismic response of a single story structure.
Nonlinearity of the friction damped structure was simplified as a
linear one based on several assumptions such as equivalent viscous
damping, approximation of theDMF at a natural frequency, and the
frequency domain approach using a transfer function.

6. Conclusions

This study presented a simplified design process of a friction
damper for controlling seismic responses. A closed form solution
for a dynamic modification factor (DMF) was derived by assuming
that the friction damped structure showed a steady-state response
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with a small friction damping force, and that the Coulombdamping
force could be replaced by an equivalent viscous damping force.
The DMF turned out to be narrow banded and dependent on the
equivalent viscous damping ratio at the natural frequency. Based
on these observations the equivalent viscous damping ratio was
derived from friction force ratio and inherent viscous damping
ratio. The equation for the DMF was transformed into a transfer
function by adopting the value of the DMF at the natural frequency
and rearranging the equation by prescribing target damping
ratio. Then response reduction factor of displacement responses
with and without friction dampers was found analytically, and a
design procedure was proposed to determine the required damper
friction force to satisfy a given target response reduction factor.
Time history analysis of a SDOF system with a friction damper
was carried out to check if the given target response reduction
factor was satisfied using ten earthquake records. The analysis
results showed that the mean response reduction factors obtained
by numerical time history analyses matched well with the target
response reduction factors. Based on the analysis results it was
concluded that the proposed procedure could be used for designing
a friction damper to control structural responses to satisfy a given
target performance.

In this study a single-degree of freedom system was used
to derive the amount of friction force to meet a given target
response. In amulti-story structurewith friction dampers installed
between stories, the proposed simple process can be applied
with the same strategy. First themulti-degrees-of-freedom system
needs to be transformed into the equivalent single-degree-of-
freedom system. The total amount of friction force is obtained in
the modal coordinates of the equivalent system. Then the total
amount of the friction force is distributed to each story of the
original multi-story structure using appropriate techniques based
on modal characteristics of the structure. The process is similar
to the capacity spectrum method for the nonlinear static seismic
analysis procedure.
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