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a b s t r a c t

In this study sensitivity analyses were conducted to investigate the relative importance of different
uncertain variables on the life-cycle cost (LCC) estimation of a steel jacket offshore platform subjected to
seismic loads. The sensitivity analysis was conducted using different methods such as tornado diagram
analysis (TDA), first-order second-moment (FOSM) and Latin hypercube sampling (LHS). The analysis
results showed that the uncertain variables related to loss estimation and seismic hazard had a more
dominant influence on the LCC variability compared to the other variables. Among the structural un-
certain parameters, the variability in plastic hinge strength and modal damping ratio had the most
significant impact on the LCC. Variability in the initial cost showed higher impact on LCC estimations
compared to other cost component variables. It was also observed that the application of members with
energy dissipation capability resulted in more economical design compared to use of conventional
members.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Life-cycle cost (LCC) evaluation of a structure is generally car-
ried out to determine a rational design, retrofit, or maintenance
scheme among many possible options. For accurate life cycle cost
(LCC) estimation of structures, the uncertainties associated with
design variables need to be investigated properly. The more
knowledge we have regarding these uncertain variables and their
variations, the more reliable and accurate LCC estimations can be
obtained. Sensitivity analysis is a useful tool for highlighting the
relative impact of input variables on corresponding output
response. Life-cycle cost-benefit assessment of seismic risk miti-
gation activities requires accurate estimation of LCC. These activ-
ities provide important source of decision-making supporting
information (Goda et al., 2010; Takahashi et al., 2005; Goda
and Hong, 2006; Hanai et al., 2003). In addition, accurate LCC
assessment plays an important role in performance-based and
consequence-based earthquake engineering (Ellingwood and
Wen, 2005).

Most of LCC studies have focused on incorporating LCC as an
objective function for achieving optimum designs of structures
(e.g. Liu et al., 2005; Zou et al., 2007; Wen and Kang, 2001a,
2001b). Other studies are dedicated to using LCC in seismic as-
sessment (e.g. Lagaros, 2007; Gencturk, 2013; Lamprou et al.,
2013). However, less attention has been paid to the sensitivity of
LCC for different input parameters. Moreover, most of the seismic
LCC studies found in literature have focused on conventional
structural systems designed using force-based seismic design (e.g.
Liu et al., 2004; Ang and Lee, 2001; Beck et al., 2003). In addition,
most of current studies give less concern to the impact of soil-pile-
structure interaction (SPSI). However, consideration of SPSI sig-
nificantly affects the seismic fragility of pile-founded structure
(Kwon and Elnashai, 2010) which has a direct effect on the LCC
estimation.

Sensitivity analysis is generally performed to identify the re-
lative importance of design variables. Padgett and DesRoches
(2007) studied the sensitivity of a multi-span simply supported
steel girder bridge. Kim et al. (2011) studied the sensitivity of
design parameters of steel buildings subjected to progressive col-
lapse. Celarec et al. (2012) investigated the sensitivity of seismic
response parameters to the uncertain modeling variables of four
infilled RC frames using pushover analysis. Zona et al. (2012)
conducted a response sensitivity analysis to study the effects of
brace over-strength distributions of steel frames with buckling-
restrained braces (BRBs) on the expected maximum reduction of
seismic performance as measured by local and global engineering
demand parameters (EDPs). Recently, Nour El-Din and Kim (2014)
conducted a sensitivity analysis of pile-founded fixed steel jacket
platforms subjected to seismic loads.

They also conducted seismic performance evaluation of jacket
platforms with various bracing types (NourEldin and Kim, 2015).

In the current study, a steel jacket offshore platform in Gulf of
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Notations

a and b are the regression coefficients for linear regression of
drift demand D on intensity Sa in logarithmic space

ko and k are the coefficients for linear regression of hazard
( )H sa on intensity Sa in proximity of limit state prob-

ability (region of interest) in logarithmic space.
Ci corresponding cost of exceeding a specific limit state
Co initial construction cost which will be related to the

material cost in the current study
D̂ median drift demand
D1 damage index of the platform, which can be expressed

as the ratio between the actual and allowable max-
imum inter story drift ratios.

DR repairable damage index
EDPj LCC estimated at the jth simulation
Ki j, prescribed correlation coefficients between the ran-

dom variables Xi and Xj

NSim number of simulations
NVar number of random variables
PLS annual probability of exceeding a specific limit state
Q d pile ultimate bearing capacity
Q f pile skin friction resistance
Q p pile total end bearing
RC replacement cost

^
Sa

C spectral acceleration corresponding to the median
drift capacity

Sa elastic spectral acceleration (measure of ground mo-
tion intensity)

Sa spectral acceleration (measure of ground motion
intensity);

Si j, generated correlation coefficients between the ran-
dom variables Xi and Xj

xj i, value of the ith input random variable for the jth
simulation

β ,C drift capacity dispersion measure
β |D sa

drift demand dispersion measure
ρi Spearman rank-order correlation coefficient
[R] Matrix of ranking coefficients
[S1] matrix of correlation
BRB buckling restrained brace
Cm maintenance cost
COV coefficient of variation
CP collapse prevention limit state
E norm measuring the difference between the gener-

ated and the prescribed correlation matrices
E[CSD] annual expected seismic damage cost
EDP engineering demand parameter
FB-BRB steel jacket structural model of the platform that de-

signed using buckling-restrained bracing
FB-Conv steel jacket structural model of the platform designed

using the conventional bracing
FOSM first-order second-moment
Fy specified minimum yield strength of steel

( )H sa hazard function of spectral acceleration, annual
probability that intensity Sa at site will equal or exceed
sa

IO immediate occupancy limit state
L service life of the structure
LCC life-cycle cost
LHS Latin hypercube sampling
LS life safety limit state
MCE maximum considered earthquake
N total number of limit-states considered,
NSim number of simulation
p lateral soil reaction (p) per unit length of the pile
PGA peak ground acceleration
Pi total probability that the structure is in the ith damage

state throughout its lifetime,
Pu required axial strength
Pysc design strength of a steel cross section.
R rank of the jth sample value of the input random

variable
R response modification factor according to ASCE-7

(2010)
Ry over strength factor
SD1 design, five percent damped, spectral response accel-

eration parameter at a period of 1 second
SDS design, five percent damped, spectral response accel-

eration parameter at short periods
SPSI soil-pile-structure interaction
TDA tornado diagram analysis
X the sample matrix of the random variables, where the

number of rows and columns are representing the
number of simulations and number of input variables,
respectively

Xbearing random variable of pile end bearing
Xcyclic random variable of cyclic nature of the loading
Xdelay random variable of set-up or effect of time since the

pile is driven or last disturbed
Xfriction random variable of shaft friction between soil and pile
y lateral pile displacement
α discount factor which is equal
β compression adjustment factor
ΔC,i is the structural capacity, represented in terms of drift

ratio, defining the ith damage state
ΔD earthquake demand, represented in terms of drift

ratio
ф strength reduction factor
λ annual discount rate, and
ω strain hardening adjustment factor
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Moattam, offshore of Myanmar, designed considering soil-pile
structure interaction, is used as a case study. Different bracing
types, such as buckling-restraint braces and conventional braces,
are applied in the platform design to investigate their effect on the
seismic LCC of the platform structures. Sensitivity analysis is per-
formed using tornado diagram analysis (TDA), first-order second-
moment (FOSM), and Latin hypercube sampling (LHS) techniques.
The effects of both aleatory and epistemic uncertainty on LCC have
been investigated for this platform. The sources of uncertainty
considered in the present sensitivity study are categorized into
different categories: (1) the structure capacity and modeling, e.g.
related to stiffness or damping characteristics, etc.; (2) the SPSI
modeling, e.g. soil-pile friction capacity, pile end-bearing capacity,
etc.; (3) the seismic hazard, e.g. the probability of occurrence;
(4) the loss-estimation socioeconomic criteria and cost compo-
nents, e.g. damage limit states, initial cost, limit state exceedance
cost, annual discount rate, etc.

2. Sensitivity analysis methods applied

In order to have enough confidence in any sensitivity analysis
results, it is important to monitor the variation of the input
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parameters and the corresponding output response quantity with
different methods. In the present study, three different methods
have been adopted in the sensitivity analysis of the offshore
platform structure under investigation. These methods are based
on the probability theory, which are the Tornado Diagram Analysis
(TDA), the First-Order Second Moment (FOSM), and the Latin
Hypercube Sampling (LHS) methods. The methods used in the
current study proved, in previous studies, to have simplicity in
implementation while maintaining the required efficiency. In
general, these methods are useful tools for sensitivity studies
where Monte Carlo Simulation (MCS) is not affordable.

In Tornado Diagram Analysis (TDA), which is a common tool for
decision analysis (Porter et al., 2002), the upper and lower bounds
of a random variable are used to obtain the variability in the
output value. Through any LCC model, the difference between such
estimations, referred to as swing, is considered as a measure of the
seismic LCC sensitivity. This method has been applied in the
seismic sensitivity analysis of structures in many previous studies
(e.g., Porter et al., 2002; Barbato et al., 2010; Kim et al., 2011). This
method makes a direct relation between the uncertain input
variable and the output value of the EDP through a deterministic
function. A few simulations are generally sufficient to determine
the required variability in the selected EDP. The limitation of this
method is that the output is determined through a known de-
terministic function of a variety of input variables, and that either
the value or the probability distribution of each of the input
variables is specified (Porter et al., 2002). If the function is not
deterministic, this method will not be useful and another prob-
abilistic approach should be used.

In First-Order Second Moment (FOSM) method, the mean and
standard deviation of the input parameter are predetermined and
the mean and standard deviation of the structural response are
obtained. The FOSM method is formulated in a Gaussian space,
and involves a small number of structural analyses in comparison
with some other methods such as Monte Carlo simulation. The
method has been used in many previous studies (e.g. Ibarra, 2003;
Haselton, 2006; Baker and Cornell, 2003, 2008; Celarec and Dol-
šek, 2013). The details of the method can be found elsewhere (e.g.
Lee and Mosalam, 2005). Assuming that the LCC model is a de-
terministic function, the variation in any input parameter will
result in variation of the LCC estimation.

The limitation of this method is that, in the nonlinear functions,
the mean and variance may be very difficult (or even impossible)
to derive analytically. In this case, MCS would be necessary (Ang
and Tang, 2007).

Latin Hypercube Sampling (LHS) method uses stratification of
the probability-distribution function of the random variables and
consequently requires significantly fewer simulations in compar-
ison with Monte Carlo simulation method. The details of the
method can be found elsewhere (e.g. Vorechovsky and Novak,
2003; Dolsek, 2009; Celarec and Dolšek, 2013). In the current
study, the number of simulation (NSim) is assumed twice the
number of the input variables ( )NVar . This assumption has been
recommended in previous studies (e.g. Celarec and Dolšek, 2013;
Dolsek, 2009) to maintain the required effectiveness of the sample
and to achieve a sufficient accuracy of the results. In this case, the
norm E, which is an indicator to the sample effectiveness, is
maintained as minimum. The norm E is a measure of the differ-
ence between the generated and the prescribed correlation matrix,
which is given as,

( )( ) ∑ ∑=
−

−
( )=

−

= +
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N N
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1 1Var Var i
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where Si j, and Ki j, are, respectively, the generated and the pre-
scribed correlation coefficients between the random variables Xi
and Xj, and NVar is the number of random variables. In the current
study, Matlab programming language (Mathwork, 2011) is used for
achieving minimum norm E through Simulating Annealing tech-
nique. Si j, and Ki j, are related to the norm E (an objective function),
which should be minimized. This minimization is achieved
through two steps: mutation and selection. Mutation represents
the random change of the rank of one randomly selected random
variable. This can be achieved by exchanging rank m to become
rank n and vice versa in a vector (column) from the sample matrix
X, which represents the sample of one random variable. After such
a mutation, the sample matrix X is changed and the new norm E
can be calculated. The second step, selection, decides if the new
generation of the arrangement of the sample matrix X is accep-
table or not. Further details about this technique can be found in
Vorechovsky and Novak (2003). The Spearman rank-order corre-
lation coefficient (ρi) is used to measure the sensitivity of the LCC
to the input random variables (Vorechovsky and Novak, 2003;
Kala, 2005). For the ith input random variable, the (ρi) coefficient is
expressed as

( )
( )( )

ρ = −
∑ ( ) −

− ( )
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where xj i, is the value of the random variable for the jth simula-
tion, taken from the optimized sample matrix, EDPj is the LCC
estimated at the jth simulation, NSim is the number of simulations,
and r denotes the rank of the jth sample value of the input random
variable or response variable. The range of ρi is ρ− ≤ ≤1.0 1.0i ; the
closer the ρi coefficient goes to zero, the less dependent the output
response becomes on this variable.

The limitations of the LHS method can be summarized as: 1)
this method gives relative importance of the input uncertain
variable. No swing value can be obtained using LHS as in the case
of FOSM or TDA methods; 2) this method is sensitive to the as-
sumed number of simulations. Special care should be given to the
number of simulation especially for small number of input vari-
ables; 3) in case large number of variables are involved, the
number of simulation will be large. In this case, LHS method may
be computationally expensive option.

As shown from the above discussion regarding the sensitivity
methods, the approach for each method is different to examine the
impact of the input variable on the required EDP. In TAD and FOSM
methods, the mean and standard deviation of the input parameter
are predetermined, and based on that the mean and standard
deviation of the structural response are obtained. However, in LHS
method, simulations are conducted to arrange the variables based
on their relative importance when the ranges of the input vari-
ables are stratified. This adds more reliability in the results as the
relative importance of the input variables are checked through
different approaches.
3. Design and modelling of jacket

3.1. Jacket structure

The platform has the topside with four-stories and a four-story
jacket with total mass of 138,000 ton located in the main nodes of
the jacket. Only the major structural components are included
within the analysis model, and the contribution of the conductors
to the platforms’ stiffness and strength is neglected. A perspective
plot of the platform is shown in Fig. 1(a), a plan view of the jacket is
shown in Fig. 1(b), and a 2D-frame model extracted from the plat-
form structure is shown in Fig. 1(c). In this study, all analyses are
conducted on the representative 2D-frame models. The brace ele-
ments are modeled as truss elements and Jacket legs are modeled



Fig. 1. Jacket structure schematic views, (a) perspective plot of the actual platform; (b) plan view of the jacket; and (c) 2-D single frame extracted from the actual platform
with the soil-pile configuration.
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as frame elements (beam-columns). The jacket horizontal members
are frame elements (beams) pin-connected at the ends. A pinned
beam-column-brace connection is used at all story levels to avoid
undesirable connection failures due to unbalanced brace forces. The
model structures are designed with compact sections so that local
buckling is prevented. The local behaviors of joints are not con-
sidered based on the assumption that they are designed to be
stronger than elements using larger safety factor.

The mass used in the dynamic analysis consists of the mass of
the platform associated with gravity loading defined, the mass of
the fluids enclosed in the structure and the appurtenances, and
the added mass. The mass of the model frame is applied at each
joint, while the mass from the top side structure is applied at the
upper two joints of the jacket frame. The nonlinear dynamic
analyses of the model frame structure are carried out using the
SAP2000 Software (2005). A frame element with plastic hinges is
chosen from the SAP2000 library to model the nonlinear behavior
of platform members. The modal damping ratio of 5% of critical
damping is generally used in the analysis of offshore structures
(API RP-2A, 2000), which includes the effect of water-structure
interaction and the foundation and structure related energy dis-
sipation effects.

In order to investigate the effect of the ductility on the LCC
sensitivity to the input variables, the platform is designed using
two different bracing systems: the conventional bracing (FB-Conv)
and the buckling-restrained bracing (FB-BRB). The former is de-
signed using R (response modification factor)¼3.25, and the latter
is designed using R¼7.0 according to ASCE-7 (2013). Detailed



Fig. 2. Configuration of lateral soil stiffness modeled in SAP2000.
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information of the analysis model structures and design para-
meters can be found in Nour El-Din and Kim (2014).

The design base shears of the force-based designed model
structures are obtained in accordance with ASCE-7 (2013). The
seismic design base shear is computed using the site-specific re-
sponse spectrum, which corresponds to 2/3 of the maximum
considered earthquake (MCE) with 2% probability of occurrence in
50 years in the Gulf of Moattama, offshore of Myanmar. For force-
based design of the structures in accordance with the ASCE-7, the
nominal yield strength of materials used for all elements is 380
MPa with the material over strength factor, Ry, of 1.1. A buckling
restrained brace (BRB) has a core element enclosed in a buckling-
restrainer and therefore yields in both tension and compression.
The steel core areas of BRBs are calculated using the following
relation suggested in the AISC341-05: < фP Pu ysc , where Pu is the
required axial strength and ф is the strength reduction factor of
0.9 for both tension and compression, Pyscis the design strength
which is equal to FyAsc, where Fy and Asc are the specified mini-
mum yield strength and net area of steel core, respectively. In the
FB-BRB model, the demand on beams and columns is obtained
based on the expected yield and ultimate strengths of BRBs in
tension and compression by applying material overstrength factor,
Ry, compression adjustment factor, β, and the strain hardening
adjustment factor, ω. The values of these factors are shown in
Table 1. In the case of conventional braces, the demands on beams
and columns are obtained based on the expected tensile yield and
buckling strength of braces.

3.2. Soil-pile-structure interaction (SPSI)

In the present study, the Beam on Non-Linear Winkler Foun-
dation (BNWF) model is applied to approximate the interaction
between the pile and the surrounding soil (Matlock, 1970), in
which parallel nonlinear soil-pile springs are used along the pile
penetration length. This model simplifies the interaction between
the soil and the pile by assuming that the displacement of one
spring has no effect on the displacement of other springs. The
lateral soil stiffness is modeled using the p–y approach. In this
approach, for each layer of soil along the depth, a nonlinear re-
lationship is established between the lateral pile displacement
(y) which mobilizes the lateral soil reaction (p) per unit length.
The procedure of generating p–y curves is recommended in
American Petroleum Institute Standard API RP-2A (2000). In the
Table 1
Design parameters for model structures.

(a) FB-BRB and (b) FB-Conv models.

SDS (g) 1.0
SD1 (g) 0.7

Framing type BRBF (FB-BRB)
OCBF (FB-Conv)

Response Modification Factor, R 7 (FB-BRB)
3.25 (FB-Conv)

Importance factor, I 1
Occupancy category II
Seismic design category D

Base shear coefficient (base shear/structure weight) 0.052 (FB-BRB)
Base shear ¼ 1941 kN
0.11 (FB-Conv)
Base shear ¼ 4107 kN

Fundamental period (s) 2.75 (FB-BRB)
1.8 (FB-Conv)
present study, p-y curves are based on the actual soil data ex-
tracted from the geotechnical report of the platform site (PTTEP
International, 2010). In the numerical model proposed in this pa-
per, the Multi-Linear Plastic type link element in SAP2000 is used
to model the non-linear lateral relation between the soil and the
pile. In that link element, the nonlinear link stiffness for the axial
degree of freedom is defined according to the p-y curve. Then the
p-y curve is redefined as a force-deformation (F-D) relationship
where F is the total force acting along the tributary length of a pile
joint. After that, a lateral link is defined for each joint along each
unit pile segment to represent the lateral soil non-linear behavior.
Fig. 2 shows the configuration of the proposed model in SAP2000.
A multi-linear kinematic plasticity property type is selected for
uniaxial deformation from the SAP2000 library to model the
hysteresis of the non-gapping soil behavior.

The skin friction and the end bearing between a pile and the
surrounding soil produce the soil resistance to the axial movement
of the pile. Each of the resistance action is characterized by a
nonlinear force-deformation relationship. Experimental results
suggest that these force-deformation characteristics may be ade-
quately represented by the elastic, perfectly-plastic relationship
(Anagnostopoulos, 1983, Coyle and Reece, 1966) as shown in Fig. 3.

Frame element is chosen from the library of the SAP2000 to
model the behavior of a pile. The diameter of the pile is 1,210 mm
and penetrates into 80 m in the soil. In order to simulate the
structure-pile–soil interaction through several layers of different
soils, the piles are divided along their vertical axis such that within
each layer of the soils the portion of the pile is divided into 1.0 m
long segments. The relative movement between the pile and soil
can be simplified into a number of non-linear vertical springs re-
presenting the vertical friction force exerted by the soil on the pile
surface. For each pile, there is also an end support spring, which
represents the end-bearing capacity of the pile. Fig. 4 illustrates
the arrangement of the vertical and end bearing soil springs. The
spring parameters are calculated according to the site investiga-
tion and pile testing data (PTTEP International, 2010).
4. Uncertain variables considered in the analysis

In this section, the uncertain parameters considered in the
sensitivity study are discussed and the associated ranges or
probabilistic distributions are addressed for each input variable.

4.1. Structure capacity and modeling uncertainty

The statistical properties of structural modeling parameters are
listed in Table 2. All variables are assumed uncorrelated. In the
current study, the variation of plastic hinge property is obtained by



Fig. 3. Axial load-deflection curves for clays and sands (Anagnostopoulos, 1983; Coyle and Reece, 1966). (a) Skin friction. (b) End bearing.

Fig. 4. Schematic illustration of the pile spring model.

M. Nour Eldin, J. Kim / Ocean Engineering 121 (2016) 323–340328
scaling every force and deformation value on the force-deformation
relationship by multiplying a single, random variable; this techni-
que is called “random strength-constant stiffness” (Porter et al.,
2002).

4.2. Uncertainty of soil-pile structure

Uncertainties associated with soil-pile modeling parameters
include the axial pile-soil friction, the pile end bearing, the effect
of time since the pile is driven, and the cyclic nature of loading
during the pile driving.

The capacity prediction equation for piles in clay soil under
compression is as follows (ISO-19902, 2003):

( )= ⋅ ⋅ + ⋅ ( )Q Q X X Q X X 3d f friction delay p bearing cyclic

where Q d is the pile ultimate bearing capacity, Q f is the pile skin
friction resistance; Q p is the pile total end bearing; and Xfriction,
Xdelay, Xbearing, and Xcyclic are the random variables of the shaft
Table 2
Statistical properties of structural modeling parameters.

variable Distribution Mean value

Dead load, (Tonf) Normal 13,800
Yield stress, MPa Lognormal 380
Young’s modulus, MPa Normal 200000
Damping ratioa, % Lognormal 5.0
Plastic hinge propertyb Normal –

a Percentage of critical damping (assumed as steel braced frames). The mean value
b Depends on the plastic properties of the element.
friction, the set-up or effect of time since the pile is driven or last
disturbed, the end bearing, and the cyclic nature of the loading,
respectively. The statistical properties of these random variables
are listed in Table 3.

4.3. Uncertainty of seismic hazard

The hazard function of spectral acceleration, ( )H sa , is the an-
nual probability that intensity sa at site will equal or exceed a
specific response acceleration at a given response period sa. It can
be obtained by Eq. (4) as follows:

( )= ≥ = ( )−⎡⎣ ⎤⎦H s P S s k s 4a a a o a
k

where sa is the elastic spectral acceleration (measure of ground
motion intensity); ( )H sa is the hazard function of spectral accel-
eration, annual probability that intensity Sa at site will equal or
exceed sa; ko andkare the coefficients for linear regression of ha-
zard ( )H sa on intensity Sa in proximity of limit state probability
(region of interest) in logarithmic space. These coefficients control
the slope and the degree of nonlinearity, respectively, of the ha-
zard curve (Aslani and Miranda, 2005).

In general, the seismic hazard is modeled by a lognormal dis-
tribution. The lognormal standard deviations for the earthquake
source, transmission path, and local site response are estimated in
previous studies as 0.30 (Newmark et al., 1973), 0.70 (Donovan,
1973), and 0.41 (Hays, 1980), respectively (Choun and A.S. Elnashai,
2010). In general, the coefficient of variation (COV) of spectral
acceleration is highly dependent on the reliability of the seismic
knowledge of the location under investigation. Choun and A.S.
Elnashai (2010) used various seismic hazards with five different
median PGAs (i.e., 0.1 g; 0.3 g; 0.6 g; 1.0 g, and 1.5 g) and two
standard deviations (i.e., .30 and 0.60) to investigate applicable
hazard levels of his proposed procedure. Since there is no suffi-
cient information regarding the seismicity of Gulf of Moattama,
the COV spectral acceleration will be assumed 0.5in the current
study.

The slope of seismic hazard (k) is the power coefficient for
Mean bias Standard deviation Source of data

1.0 0.06 ISO 19902 (2003)
1.1 0.05 ISO 19902 (2003)
1.0 0.05 ISO 19902 (2003)
1.0 0.40 Kim et al. (2011)
1.0 0.20 Ellingwood et al. (1980)

is assumed as recommended by API-RP2A (2000).



Table 3
Statistical properties of the random variables associated with normally consolidated clay soil.

Variables Distribution Mean bias Standard deviation Source of data

Soil-Pile Axial Friction, (Xfriction) Lognormal 0.73 0.19 Smith et al. (1998)
Soil-Pile End Bearing, (Xbearing) Lognormal 0.91 0.43 Smith et al. (1998)
Pile Driving Cyclic Load, (Xcyclic) Lognormal 1.00 0.07 ISO 19902 (2003)
Pile Driving Time Delay, (Xdelay) Lognormal 0.86 0.02 ISO 19902 (2003)

Fig. 5. Design spectra of earthquakes with different return periods obtained at gulf
of Mottama, offshore Myanmar. (SLE: strength level earthquake; DLE: ductility level
earthquake).

Fig. 6. Site seismic hazard curves for the model structures. (a) FB-Conv. (b) FB-BRB.
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linear regression of hazard H( sa) on intensity sa in proximity of
limit state probability in logarithmic scale or, simply, the loga-
rithmic slope of the hazard curve at the desired hazard level. The
typical value of this parameter, as suggested in the previous stu-
dies (El nash; Cornell et al., 2002; Dolsek, 2012), may be between
1.0 and 4.0. It tends to be larger (steeper) for high seismic areas,
e.g. western U.S. sites, and for shorter periods. In the current study,
it is found that, for the selected offshore platform models and soil
condition, k value ranges between 1.5 and 2.1.The COV of this
parameter will be assumed to be in the range of 0.2 to 0.25.

Fig. 5 shows the platform site-specific response spectra of three
different return periods of 200, 1000, 2475 years. The seismic
hazard curves for different period, T¼1.80 s and 2.75 s, are shown
in Fig. 6. These periods are the natural period of FB-Conv and FB-
BRB models, respectively. Each point on the curve relates the
spectral acceleration at the natural period of the model structure
(which obtained from the design spectra in Fig. 5) with the cor-
responding annual frequency of exceedance of each hazard.

4.4. Uncertainty of loss-estimation parameters

The parameters related to loss estimation are the drift-capacity
dispersion measure, drift demand dispersion measure, regression
coefficient for drift-intensity relation, sensitivity factor, capacity
margin ratio, etc. The drift capacity dispersion measure, β ,C is
considered to be the structural limit state dispersion. The de-
scription of uncertainty in system capacity is complicated since a
structural system consists of many components and the system
behavior is complex under seismic excitation, especially when the
system goes into nonlinear range. The system capacity can be
more conveniently described in terms of the system limit states of
interest. The uncertainty in capacity against collapse can be de-
scribed in terms of the mean and standard deviation of the inter-
story drift capacity under multiple recorded ground motions from
incremental dynamic analysis (IDA). More details about how the
global capacity is determined is given in the FEMA 350 and 351
guidelines (2000) and Yun and Foutch (2000). The coefficient of
variation of this displacement capacity is in the range of 30% as
used in the FEMA/SAC procedure (Wen et al., 2004). In other
studies, e.g. HAZUS (2003), epistemic uncertainty in the damage-
state threshold of the structural system is given as 0.4 for all the
structural damage states and building types. Variability (i.e.,
aleatory uncertainty) in the capacity properties of the model
building type is given as 0.25 for buildings designed by seismic
design code and 0.30 for buildings designed by non-seismic design
code (Choun and Elnashai, 2010). Based on this information, in the
current study, a value of 0.3 for the COV is used.

The drift demand dispersion measure β |, D sa
, is a dispersion

measure for seismic drift demand at a given spectral acceleration
level. Cornell et al. (2002) suggests a value of β |D sa

in the range of
0.3 or more based on Luco and Cornell (2000) and Yun and Foutch
(2000). Previous works of Lagaros et al. (2005, 2007) suggest that
the coefficient of variation of the maximum inter-story drift of an
RC structure is close to 10% when uncertainties in both material
properties and seismic excitation are taken into account. In the
current study, the dispersion in earthquake demand ( β |D sa

) due to
variability in groundmotions is established using two sets of
earthquake ground motions each representing a different hazard
level at return periods of 200 and 2475 years. The details of the
records are given elsewhere (Nour El-Din and Kim, 2014). For the
current study, COV in β |D sa

is taken as 0.3. It is worth mentioning
that β |D sa

is assumed to be the same for the different seismic



Fig. 7. Relation between median inter-story drift demand (MIDR) and seismic in-
tensity (Sa). (a) FB-Conv. (b) FB-BRB.
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hazard. This is because of using a scaling method that minimizes
the dispersion in demand. In this method of scaling, the ground
motion records obtained from PEER database (PEER, 2013) are
scaled in such a way that the geometric mean of the response
spectra for the records matches the uniform hazard spectrum over
a period range corresponding to the fundamental period of the
structure. In addition, this scaling method takes into account the
elongation of the structural period due to non-linear behavior. This
‘period range’ scaling method is preferred compared to the scaling
at the spectral response acceleration corresponding to the struc-
ture fundamental period to decrease the scatter in responses as
suggested by previous studies (e.g. Shome et al., 1998; Martinez-
Rueda, 1998; Kennedy et al., 1984).

The Regression coefficient of drift-intensity relation, b, is one of
the regression coefficients for linear regression of drift demand D
on the intensity Sa in logarithmic space. It can be calculated based
on the regression analysis of the equation:

^ = ( ) ( )D a S 5a
b

where D̂ is the median drift demand; Sa is the spectral acceleration
(measure of ground motion intensity); a and b are the regression
coefficients for linear regression of drift demand D on intensity Sa

in logarithmic space; a and b are the constants that control the
slope and degree of nonlinearity, respectively (Aslani and Miranda,
2005). Some studies suggest b¼1.0 for moment frames (Cornell
et al., 2002; Luco and Cornell, 1998, 2000). In the present study,
this parameter is found to be around 0.31 and 0.24 for FB-Conv
and FB-BRB models, respectively. The COV of b is assumed in be-
tween 0.20 and 0.25. Fig. 7 shows the relation between the median

drift demand D̂ (which is represented by median maximum inter-
story drift, MIDR, in the current study) and intensity Sa in a
logarithmic space for FB-Conv and FB-BRB models.

The most practical way to estimate the regression parameters, a
and b, is to perform nonlinear dynamic-response time-history
analysis (NLTHA) on the structure using all records with scaling
each record set to the corresponding intensity measure at the
fundamental period of the structure. For example, for the 10-
scaled records of the 200yr hazard, first nonlinear time history
analyses (NLTHA) are conducted on the model structure, then the
median and the standard deviation of the MIDR are obtained. This
median value will be plotted against the corresponding spectral
acceleration (i.e. Sa at the fundamental period of the structure).
After that, one can plot the relation between the drift-demand and
the intensity, and then conduct a regression analysis of (lnD) on
(lnSa) as shown in Fig. 7.

In records selection for NLTHA the following information is
considered: the soil type, the shear wave velocity, the magnitude,
the fault type, and the different distance measures from the site to
the fault rupture. The records are selected from the PEER database
(2013). The records are listed in the Appendix A for information
and the details of these records can be found elsewhere (Nour El-
Din and Kim, 2014).

The Sensitivity factor, (k/b), is an indicator of the relation be-
tween the drift, spectral acceleration, and the probability as shown
in Eq. (6):
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where PLS is the damage state probability;
^

Sa
C is the spectral ac-

celeration corresponding to the median drift capacity (obtained
from drift-intensity relation Eq. (5) by setting the drift as the limit
state); H(.) is the seismic hazard function of spectral acceleration,
the annual probability that intensity Sa at a site will equal or ex-
ceed sa (obtained from Eq. (4)); k is one of the coefficients for
linear regression of hazard H(Sa) on intensity Sa in proximity of
limit state probability in logarithmic space, which controls the
degree of nonlinearity of the hazard curve (can be obtained from
the hazard curve fitting); b is one of the regression coefficients for
linear regression of drift demand D on intensity Sa in logarithmic
space (can be obtained from drift-intensity curve fitting); βD|s is
the dispersion measure for drift demand D at given Sa level; and βC
is the dispersion measure for drift capacity C (standard deviation
of natural logarithm) assumed to be 0.3 based on previous studies
(e.g. Cornell et al., 2002).

It can be observed that change in drift by x leads to a change in
Sa by a factor of x1/b, which in turn implies a change in the prob-
ability by xk/b (Cornell et al., 2002). The mean and the COV of this
factor (k/b) will be taken based on those of k and b parameters
explained in the previous sections. The sensitivity factor (k/b) has
not been considered in the LHS method because it is a dependent
variable (i.e. dependent on k and b variables).

4.5. Uncertainity of seismic LCC parameters

The parameters associated with the seismic LCC analysis in-
clude limit state total repair costs, initial costs, service lifetime,
annual momentary discount rate, and maintenance cost. In gen-
eral, there are two categories of the limit state damage cost in
fixed offshore structures (Gang et al., 2009). The first is the direct
limit-state damage cost, which is related to repair cost, cost of
damage to equipment, cost of deferred production, death and in-
jury losses. The second is the indirect limit-state damage cost
which is related to environmental and socio-economic impacts
caused by the collapse or explosion of the platform. The damage
costs usually include the cost of repair, the loss of equipment, the
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deferred production loss, the cost of injuries, the loss associated
with fatality, and the indirect losses related to the loss corre-
sponding to platform collapse. Details about the calculation for-
mula for each component of the limit state cost can be found
elsewhere (e.g. Gang et al., 2009).

It needs to be stated that the current study focuses on repair
cost only. This is because the lack of reliable data regarding the
other cost items for the Gulf of Moattam. In addition, some cost
items are highly variable depending on the type and function of
the platform. For example, for unmanned platforms, the cost of
injuries and the loss associated with fatality may not exist. In
addition, the cost associated with the loss of equipment is highly
dependent on the function of the platform whether it is wellhead
platform, processing platform, accommodation platform, etc.
Moreover, the cost of deferred production loss and indirect losses
highly variable from one region to another. For example, based on
Gang et al. (2009), which used Gulf of Mexico as a reference data,
the deferred production loss and indirect losses may reach 100
and 3000 times the initial cost. In this case, these two cost items
will dominate the total life cycle cost and the effect of other input
variable will be marginal.

The limit state repair cost CLS, for the ith limit state, can be
formulated as follows (Gang et al., 2009):

( )=
<

≥ ( )
⎪

⎪⎧⎨
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R D D D D

R D D

/

7
LS
i C R R

C R

1 1

1

where RC is the replacement cost, D1 is the damage index of the
platform which can be expressed as the ratio between the actual
and allowable maximum inter-story drift ratios
( )=D MIDR /MIDRact all1 ; =HMIDR /50all , where H is the vertical dis-
tance between the horizontal bracing levels in the jacket structure.
DR is the repairable damage index ( = )D MIDR0.6R all .

Three structural damage states are used such as minor (H/250),
major (H/125), and collapse (H/50). If the replacement cost is as-
sumed equal to the initial cost, these damage state costs corre-
spond to 33, 67, and 100%, respectively, of the initial cost of the
structure.

In this study, the COV for the limit state repair costs is assumed
to be in the range of 0.15–0.20 (RS Means Corp, 1997; Choun and
Elnashai, 2010; Lagaros et al., 2006). It should be mentioned that
in addition to the cost of repair due to seismic damage, LCC gen-
erally includes other cost items such as inspection, maintenance,
and operating and demolishing cost, which are not the focus of the
current paper.

The initial cost, CO, is related to the material and the labor costs
for the construction of the structure. For offshore structures, more
cost items should be included such as the transportation, in-
stallation costs, etc. For simplicity, it is assumed that the initial
cost will be the same for both FB-BRB and FB-Conv models. That is,
the cost reduction in steel tonnage of the BRB system will offset
the cost increase in BRB construction and fabrication compared to
the conventional bracings (Dasse, 2007).

The construction of a fixed steel offshore platform is commonly
carried out in on-shore yards. This means that material and labor
are very similar to those required for the fabrication of typical steel
structures. Based on that, it is reasonable to use the available data
for building structures. Choun and Elnashai (2010) used 0.2 as a
variability in uncertainty of the replacement cost in their study for
building structure. Based on that, the logarithmic standard de-
viation of CO may be assumed 0.20 in the current study.

The service lifetime of most of fixed type off shore structures
ranges between 20 to 35 years according to field experience. Based
on that range and using normal distribution, the mean and stan-
dard deviation will be 27.5 and 7.5 years, respectively, which leads
to COV¼0.3. The annual momentary discount rate is used to
calculate the value of benefits or costs that will occur in the future.
According to FEMA 227 (1992b) and Wen and Kang (2001b), a
discount rate of 3 or 4% is reasonable for public sector con-
siderations, and for private sector considerations a slightly higher
rate of 4–6% is reasonable. A discount rate is used to calculate the
value of benefits or costs that will occur in the future. Increasing
the discount rate lowers the present value of future benefits.
Conversely, assuming a lower discount rate raises the present
value of future benefits or cost. Since the current platform under
consideration is owned by a national oil company of a country (i.e.
public sector), 3% discount rate is used as a mean value and 0.3 is
used as its COV. The variability in maintenance cost per year is
assumed as the same with the variability of initial cost and limit
state cost (i.e. COV¼0.15 to 0.2), and the mean value is assumed to
be 0.1 of the initial cost based on previous experience similar to
the platform structure under consideration. The focus of the cur-
rent study is on the structural maintenance cost, which will not
cause shut down of the platform or stopping the operation and
production.
5. Formulation of seismic LCC

The expected LCC of a structure can be calculated as follows
(Wen and Kang, 2001a; Gencturk, 2013):

∫ λ
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where Co is the initial construction cost which will be related to
the material cost in the current study, L is the service life of the
structure, λ is the annual discount rate, and E[CSD] is the annual
expected seismic damage cost, which is governed by a Poisson
process (implicit in hazard modeling)and does not depend on
time. It is assumed that structural capacity does not degrade over
time and the structure is restored to its original condition after
each hazard; On the right hand side, α is the discount factor which
is equal to [1-exp(-ql)]/ql, where q ¼ ln(1þ λ). E[CSD] is given by
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where N is the total number of limit-states considered, Pi is the
total probability that the structure is in the ith damage state
throughout its lifetime, and Ci is the corresponding cost. In ac-
cordance with the definition of seismic hazard, three structural
damage states are used (i.e. N is equal to three) such as IO, LS, and
CP, and Ci is assumed to be 30, 70, and 100 percent, respectively, of
the initial cost of the structure. This is based on the correspon-
dence of these damage states with the information provided by
Gang et al. (2009) which is similar to building structures as pro-
vided by Fragiadakis et al. (2006). Unlike TDA and FOSM, the Cls
variable is considered independent of the initial cost in the LCC
calculation using the LHS method. However, the same upper and
lower bounds used in the TDA and FOSM methods are used for the
stratification of the variable in the LHS method. This is to achieve a
common base of comparison among the three methods for this
particular variable. Pi is given by

( )= ∆ > ∆ − (∆ > ∆ ) ( )+P P P 10i D C i D C i, , 1

where ΔD is the earthquake demand and ΔC,i is the structural
capacity, usually represented in terms of drift ratio, defining the
ith damage state. The probability of demand being greater than
capacity, ∆ > ∆ ,D C i, is evaluated as discussed in Section 4.4 using
Eq. (6)



Table 4
The best estimate values and COV of the loss estimation and LCC variables of the base-case.

Parameter FB-Conv FB-BRB COVa Note

Limit state LS1 LS2 LS3 LS1 LS2 LS3 -

MIDR, % 1 2 3 1 2 3 – % of Jacket height
L, (years) 30 30 0.30

^
Sa

c , g 0.30 0.52 0.63 0.45 0.66 0.78 0.50

β |D sa 0.3 0.3 0.30

ko 1.48E-04 8.35E-05 –

k 1.80 1.63 0.20

b 0.312 0.24 0.25
βC 0.3 0.3 0.30
C ,$o 28,900 28,900 0.2 Assuming initial cost is the same for conventional brace and BRB

C ,$i 8,670 14,450 20,230 8,670 14,450 20,230 0.2 Assuming 0.3, 0.5, and 0.7 of C ,o respectively
λ 0.03 0.03 0.3
Cm 2,890 2,890 0.2 Assuming 0.1 of C .o

Sensitivity factor (k/b) 5.77 6.79 0.2–0.25

a All variables are assumed normally distributed with mean bias ¼1.0.

Fig. 8. Variability in seismic hazard of FB-Conv model due to variability in
(a) damping and (b) mass.
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6. Sensitivity analysis of seismic LCC

In this section, the sensitivity of seismic LCC for various un-
certain input parameters is investigated. Through the sensitivity
study, the expected ranges of LCC variation can be identified.
Statistical data available for offshore structures in literatures are
used in the analysis, but some data not available in the literature
are determined based on practical experience and engineering
judgement. The sensitivity analysis used in this study involves
comparisons of the results determined from the deterministic
model. The results of the sensitivity analysis are used in order to
rank the random variables by their impact on the seismic LCC. The
variation of the LCC estimations obtained from three different
analysis methods such as TDA, FOSM, and the LHS methods are
compared to ensure the reliability of the results. The FB-Conv and
FB-BRB cases with pile end condition are used as case study
structures for this sensitivity analysis. All variables are set to their
best estimate (i.e. mean value) in the base case model, then, the
LCC is estimated for the upper and lower bounds of each input
variable using TDA, FOSM, or LHS methods. Table 4 shows the best
estimate values (i.e. mean) of the loss estimation and LCC variables
of the base-case.

6.1. Variation of seismic hazard and demand-intensity relation

Structural modeling variables such as damping, plastic hinge
property, mass, soil-pile friction, etc., have direct impact on the
seismic hazard and the demand-intensity relation through the k
and b parameters. That is, the variability in LCC due to variability in
structural modeling variables is controlled through k and b para-
meters. Figs. 8 and 9 show the variability of the seismic hazard due
to variability in damping and mass in FB-Conv and FB-BRB models,
respectively.

The variation in damping ratio is defined in Fig. 8 using the
10th and the 90th percentiles of the lognormal distribution as the
lower and the upper bounds, respectively. In this case, the mean
and the standard deviation of the damping ratio are logarith-
mically transformed to be 1.535 and 0.385, respectively. Using the
inverse of the lognormal distribution, the lower and the upper
bounds of the damping ratio become 2.8% and 7.6%, respectively.
As can be observed in Fig. 8, the spectral acceleration values of the
10th percentile trend line are larger compared to those of the 90th
percentile values for the same annual frequency of exceedance.
This is because the response spectrum associated with the lower
bound damping ratio shifted up, which results in larger spectral
acceleration associated with the same natural period of the
structure.

In Fig. 9, the variation in mass is calculated using the 10th and
the 90th percentiles of the Gaussian distribution as the lower and
the upper bounds, respectively. In this case, mass is varied



Fig. 9. Variability in seismic hazard of FB-BRB model due to variability in
(a) damping and (b) mass.
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between 0.923M and 1.077M , where M refers to the mean dead
load mass, and the factors 0.923 and 1.077 refer to the inverse of a
Gaussian distribution with unit mean and coefficient of variation
of 0.06, evaluated at the 10th and the 90th percentiles, respec-
tively. It can be observed in Fig. 9 that the spectral acceleration
values of the 10th percentile trend line are larger compared to
those of the 90th percentile values for the same annual frequency
of exceedance. This can be attributed to the reduction of the nat-
ural period of the structure when the lower bound mass is used.
This reduction in structure natural period increases the corre-
sponding spectral acceleration for the same annual frequency of
exceedance.

Figs. 10 and 11 present the variability of the demand-intensity
relation due to the variability in damping, plastic hinge property,
mass, and soil-pile friction parameters in FB-Conv and FB-BRB
models, respectively. The variabilities in damping and mass will be
similar to those of the FB-Conv model as discussed above. Varia-
bility in the resistance of the plastic hinge follows an approach
called ‘random strength, constant stiffness’ which was re-
commended by Porter et al. (2002). In this approach, every force
and deformation value on the force-deformation relationship is
scaled by a single, random variable. In this case, strength is varied
between 0.74F and 1.26F, where F refers to the mean nominal
strength of the element under consideration, and the factors 0.74
and 1.26 are the inverse of a Gaussian distribution with unit mean
and coefficient of variation of 0.20, evaluated at the 10th and the
90th percentiles, respectively. In a similar fashion, the lower and
the upper bounds of soil friction resistance are found to be 0.76F
and 1.24F, respectively, where F refers to the mean nominal
strength of the soil friction.

As can be observed in Figs. 10 and 11, the degree of non-
linearity, which is controlled by the factor b, is larger in the case
of FB-Conv compared to that of the FB-BRB. This may be justified
based on the behavior of each system in the nonlinear range,
where ductility plays an important role. FB-BRB, which is more
ductile, shows less variation of the mean responses of the
structure with changes in the level of ground motion intensity.
Another interesting observation is that in the case of damping
and mass variables, the difference between the b values of the
10th and the 90th percentiles for FB-BRB is almost double that of
the FB-Conv. However, in the case of the soil-pile friction variable,
this difference is almost in the same order of magnitude. Bearing
in mind that the increase in b leads to decrease in the probability
of a damage state as given by Eq. (6), this observation may be
useful for predicting and justifying the relative LCC swing of
these variables. That is, it is expected that the LCC swings asso-
ciated with the FB-Conv, for damping and mass variables, are
larger than their counter parts in the FB-BRB case. However, for
the soil-pile friction variable, the same LCC swing is expected for
both FB-Conv and FB-BRB.

6.2. LCC sensitivity

For explanation purpose, an example based on TDA method is
detailed in this section. Table 5 shows summary of the LCC esti-
mation for FB-Conv model considering variability of various design
variables. In TDA, it is assumed that the output variable (EDP,
which is the LCC estimation in this study) is a known deterministic
function of a set of input variables whose probability distribution
is described in Tables 2 and 3. For each input variable, the best
estimate (mean value) and two extreme values corresponding to
upper and lower bounds (which are 10th and 90th percentiles in
this study) of its probability distribution are selected. For damping
variable, as in example, these values are 2.83%, 7.6%, 5.0% for lower
bound, upper bound, and mean, respectively.

First, using SAP2000 software, an FEM model is built using
input variables set to their best estimates (i.e mean value) and the
fundamental period is obtained (fundamental period, Tn¼1.8 s for
FB-Conv Model). After that, the hazard curve is plotted at period
equal to the fundamental period of the model under investigation
(as shown in Fig. 6a). The three points on the hazard curve re-
present the three different spectral acceleration corresponding to
the selected hazards (200, 1000, and 2475 years) at Tn¼1.8 s.
Theses spectral accelerations are extracted from the corresponding
response spectra at 5.0% damping (i.e. at the mean value). Using
hazard curve fitting, the coefficient k is obtained (k¼1.8 as shown
in Table 4 for FB-Conv). This is considered as the mean value of this
input variable, which is used for the base case. Subsequently, for
this input variable, the value is evaluated twice, using one of the
extreme values of damping ratio each time while the other input
variables are set to be their best estimates (i.e. mean value). This
process yields two bounding values of the coefficient k, which are
1.9 and 1.7 for the lower and the upper bounds, respectively, as
shown in Table 5. After that, the demand-intensity relation is
plotted through NLTHA using three sets of earthquake records
given in the Appendix A. Each set of records corresponds to a
hazard level. For each set, the median MIDR is calculated and
plotted against the corresponding spectral acceleration at the
fundamental period of the structure using 5.0% damping ratio.
From this plot, the coefficient b is obtained (b¼0.312 as shown in
Table 4 for FB-Conv). The standard deviation of the MIDR at this
stage will be used later as the dispersion measure (βD|s) for the
drift demand D at given Sa level.

Using the mean of all input variable, the demand-intensity



Fig. 10. Variability in the relation between drift demand (MIDR) and intensity (Sa) for FB-Conv due to variability in various parameter.

Fig. 11. Variability in the relation between drift demand (MIDR) and intensity (Sa) for FB-BRB due to variability in various parameters.
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relation is plotted as shown in Fig. 7. The same process will be
repeated for the 2.83% and 7.6% damping ratios and the corre-
sponding lower and upper bounds of the coefficient b are found to
be 0.274 and 0.278, respectively, as shown in Table 5 and Fig. 10a.
From demand-intensity relation and using the limit-state values
(i.e. immediate occupancy (IO), life safety (LS), and collapse



Table 5
Parameters used for LCC estimation of FB-Conv model considering variability of various design variables.

(a) Damping ratio variability

Parameter FB-Conv (ζ10%) FB-Conv(ζ90%) Note

Limit state LS1 LS2 LS3 LS1 LS2 LS3

MIDR, % 1 2 3 1 2 3 % of Jacket height
^

Sa
c , g 0.30 0.55 0.67 0.5 0.73 0.80

( )H sa 0.00163 0.00051 0.00035 0.00046 0.00024 0.00020

ko 1.63E-04 1.35E-04

k 1.9 1.7

b 0.274 0.278
( )|P LS , %sa 12.9 4.05 2.78 1.77 0.905 0.77 at

^
Sa

c

P ,%i 8.84 1.27 2.78 0.863 0.135 0.77
LCC, $ 58,978 33,876

(b) Plastic hinge variability
^

Sa
c , g 0.30 0.55 0.67 0.30 0.55 0.67

( )H sa 0.00129 0.00043 0.00030 0.00129 0.00043 0.00030

ko 1.48E-04 1.48E-04

k 1.8 1.8

b 0.24 0.291

( )|P LS , %sa 20.4 6.85 4.8 4.045 1.356 0.952 at
^

Sa
c

P ,%i 13.56 2.051 4.8 2.69 0.406 0.952
LCC, $ 77,533 38,534

(c) Mass variability
^

Sa
c , g 0.37 0.55 0.69 0.30 0.53 0.64

( )H sa 0.00100 0.00048 0.00030 0.00113 0.00044 0.00032

ko 1.44E-04 1.53E-04

k 1.95 1.66

b 0.281 0.271

( )|P LS , %sa
7.6 3.52 2.26 3.306 1.285 0.940 at

^
Sa

c

P ,%i 4.1 1.26 2.26 2.02 0.345 0.940
LCC, $ 48,718 37,159

(d) Soil-pile friction variability
^

Sa
c , g 0.30 0.55 0.67 0.30 0.55 0.67

( )H sa 0.00129 0.00043 0.00030 0.00129 0.00043 0.00030

ko 1.48E-04 1.48E-04

k 1.8 1.8

b 0.272 0.3

( )|P LS , %sa
6.65 2.235 1.57 3.3 1.1 0.78 at

^
Sa

c

P ,%i 4.42 0.67 1.57 2.19 0.331 0.78
LCC, $ 36,760 44,750
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prevention (CP) limit states), one can read across the plot to obtain

the corresponding capacity spectral acceleration (
^

Sa
C) for each limit

state as shown in Tables 4 and 5. This will be repeated for the
lower and upper bounds of the damping ratio. The corresponding

( )^
H Sa

C , as given in Table 5 for each limit state, can be obtained

from Fig. 8 or Eq. (4). After that, damage state probability (PLS) is
calculated from Eq. (6) for the lower and upper bounds of the
damping ratio. Finally, LCC is estimated using Eq. (8) for the lower
and upper bounds of variable. The absolute difference of these two
values, referred to as the swing and is illustrated in Fig. 12, is used
as an indicator of the significance of the given input variable to the
output variable. In Fig. 12, the input variables are ranked according
to their swings. A larger swing implies a more significant input
variable to the uncertainty of the LCC estimation.

It is worthwhile to mention that in TDA and FOSM, each vari-
able has one value (10th percentile or 90th percentile) and all
remaining variables are set to be their mean. If there is a de-
pendency between two variables, the value of the dependent
variable will be changed naturally due to the independent variable
in the same simulation. In LHS method, for the same simulation,
all variables should have a specific value based on the stratification
of each variable. Based on that, the dependent variable should be
set to a specific value; however, this value will be changed during
the simulation due to the independent variable. This means that
the dependent variable will have two values in the same simula-
tion, which is impossible. Consequently, this requires division of
variables into three sets based on their dependency.

For the LHS method, three variable sets are used for the si-
mulation as shown in Table 6. This division is made because Set
(2) and (3) variables are dependent on the Set (1) variables. This
means that the change in any variable from Set (1) will result in
change in Set (2) and (3) variables. Similarly, Set (3) is dependent
on Set (2). Based on that, two matrices of ranking coefficients
[R1]9x18and [R2]5x10 are utilized with corresponding correlation
matrices [S1]9x18 and [S2]5x10. [R1]9x18 and [S1]9x18 matrices are
associated with the nine variables in set (1). [R2]5x10 and [S2]5x10
matrices are associated with the five variables in Set (2) and (3).
The Matlab programming code is used to achieve a reasonable
norm (E) to have common basis for comparison. The maximum
individual norm (Emax) is 0.048 and 0.013, respectively, for E1max

and E2max. The overall norm, Eoverall, obtained from Eq. (1) is 0.003



Fig. 12. LCC sensitivity to all LCC variables obtained using TDA and FOSM methods.

Table 6.
The Spearman rank-order correlation coefficient ( ρi) for all input variables.

No. Variables The Spearman rank-order correlation coefficient ( ρi) Input variable category Remark

FB-Conv. FB-BRB

1 Mass (Dead load) 0.56 0.57 Structural modeling and SPSI input variables Variable set (1)
2 Yield stress (Fy) 0.14 0.11
3 Young’s modulus (E) 0.09 0.00
4 Modal damping ratio 0.58 0.60
5 Plastic hinge property strength (Fu) 0.800 0.62
6 Soil-Pile Axial Friction, (Xfriction) 0.51 0.46
7 Soil-Pile End Bearing, (Xbearing) 0.05 0.03
8 Pile Driving Cyclic Load, (Xcyclic) 0.01 0.03
9 Pile Driving Time Delay, (Xdelay) 0.01 0.08
10 Seismic hazard slope (k) 0.72 0.73 Seismic and Loss estimation input variables Variable set (2)
11 Drift-intensity regression coefficient (b) 0.92 0.91
12 Spectral acceleration (Sa) 0.85 0.83
13 Drift capacity dispersion (βD|s) 0.69 0.66
14 Drift demand dispersion ( βC ) 0.66 0.65
15 Sensitivity factor (k/b)a – –

16 Initial cost (Co) 0.67 0.80 Cost-related input variables Variable set (3)
17 Limit state repair cost (Cls)b 0.77 0.74
18 Service life time (T) 0.080 0.078
19 Annual momentary discount rate 0.084 0.087
20 Maintenance cost (Cm) 0.079 0.070

a This factor is dependent variable, so it cannot be simulated in the LHS method.
b This variable has been considered independent of the initial cost in the LHS simulations.
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and 0.079, respectively, for [S1]9x18 and [S2]5x10.

6.3. LCC sensitivity swing

Fig. 12 shows the sensitivity of LCC due to all variables using
TDA and FOSM methods and Fig. 13 shows the sensitivity for the
LHS method. The discussion of the results based on variables
source can be summarized as follows,

� Structural modeling and SPSI uncertain variables
Among the structural capacity and modeling uncertain vari-
ables, the modal damping ratio and the plastic hinge strength
turn out to have the most significant effect on the variability of
LCC according to the results of the TDA and FOSM methods.
Similar trend is observed in case of using the LHS method as
shown in Fig. 13. In addition, the figures show that LCC swing is
larger in case of the FB-Conv structure compared to the FB-BRB
case for most structural modeling and SPSI variables. This
implies that the effect of these variables is much higher in case
of using conventional bracing. The large LCC swing associated
with the modal damping ratio can be attributed to the high COV
value of this variable, which is 40%. On the other hand, the large
swing associated with the plastic hinge strength shows that this
variable is highly correlated with the structural global strength



Fig. 13. Spearman rank-order correlation coefficient ( ρi) for all input variables.
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as well as the maximum deformation capacity. It also can be
observed from the figures that variables such as Fy and E impose
little influence on the LCC in case of FB-Conv and no effect in
case of FB-BRB. This observation has been reported in previous
studies (e.g. Jeong and Elnashai, 2007; Lee and Mosalam, 2005).
This can be explained by the fact that the mean capacity of a
structure is only slightly affected by the material randomness,
which is an unbiased normal distribution around the mean
material properties. In addition, the effect of material random-
ness on the response variation is overshadowed by the
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randomness in the earthquake record set. The latter conclusion
has been reported in other studies (e.g. Wenet al., 2004; Pinto
et al., 2004; Kwon and Elnashai, 2006).
The pile driving cyclic load, Xcyclic, and pile driving time delay,
Xdelay, have little effect on LCC variability in the case of FB-BRB
and have modest influence in the FB-Conv as shown in Fig. 12.
On the other hand, Xfriction and Xbearing show moderate effect on
the LCC variability in both models. This proves that SPSI
modeling variables turn out to have much less impact on the
sensitivity of LCC compared with the parameters associated
with structural modeling. This finding is backed-up by the
results of the LHS method as shown in Fig. 13.

� Loss-estimation and seismic hazard variables
For loss-estimation and seismic hazard variables, it can be ob-
served from Fig. 12 that the drift-intensity regression factor (b)
has the highest influence on LCC in both model structures. This
reflects the significance of the structural system response to the
selected intensity measure on the LCC estimation. The second
highest effect (among loss-estimation and seismic hazard vari-
ables) on the LCC swing results from the seismic hazard slope
(k),then follow the seismic hazard H(Sa) and the dispersion in
capacity and demand for FB-Conv. The significant impact of
hazard function variability appears to be attributable to the
inherent record-to-record variability of the ground motion
profiles. The drift capacity and demand dispersions show
moderate effect on the LCC with larger swing in FB-BRB
compared to FB-Conv. This can be attributed to the bigger
difference between the upper and lower bounds in the prob-
ability of exceeding the limit states, e.g. PPL(IO), in FB-BRB
compared to the FB-Conv case. The sensitivity factor (k/b) shows
modest effect on the LCC swings, which is attributed to the
opposite effect of the parameters b and k on LCC; the increase of
k value leads to decrease in the LCC estimation, whereas the
opposite is true for b.
It is found that the sensitivity swings for some of the uncertain
parameters such as k and Sa of the FB-BRB model are smaller
than those for the FB-Conv case. This is due mostly to the
different seismic responses of the models. For low levels of
seismic intensity, the responses of the models are controlled by
the elastic stiffness of the models, where the stiffer FB-Conv
model shows smaller MIDR compared to the more ductile FB-
BRB. This increases the probability of exceedance of the limit
state; consequently, the annual probability of exceedance of
hazard increases leading to higher LCC swings. On the other
hand, for seismic loads with high intensity, the models are
controlled by the inelastic response, and the FB-Conv shows
larger MIDR compared to the more ductile FB-BRB model.
Consequently, the hazard annual probability of exceedance of
the FB-BRB decreases leading to lower LCC swings. Fig. 13 shows
the results of the LHS method, where b factor shows the highest
ρi followed by Sa and k (among loss-estimation and seismic
hazard variables) then the remaining variables. The sensitivity
factor (k/b) is not simulated since it is a dependent variable on b
and k.
It has been observed that the higher the natural period of the
structures becomes, the lower the LCC swings of most para-
meters become. This can be attributed to the higher seismic
intensity corresponding with the lower natural periods of the
models. In addition, it is found that when the value of the factor
k, which controls the degree of non-linearity of the hazard
function, is higher than 1.9, the LCC swings increase
significantly.

� Cost and service lifetime variables
Generally, the initial cost plays an important role in the LCC
variability not only because it has a direct effect on estimating
LCC but also because the cost of exceedance of all limit states is
taken as a percentage of the initial cost. As can be observed
from Fig. 12, the LCC swing associated with the initial cost is
similar in the FB-Conv with that in the FB-BRB. This is due to the
assumption that the initial cost is the same for FB-Conv and FB-
BRB as explained before. The other parameters are found to be
bounded by 0.2 Co limit in both model cases. The LCC sensitivity
found to be affected little from the maintenance cost and annual
momentary discount rate in both models. In the LHS method,
the ρi associated with Co and CLS are similar as indicated in
Fig. 13. This may be due to the un-coupling assumption made
between variables Co and CLS. This assumption reduces the effect
of Co on LCC compared to CLS.
7. General discussion

Generally, the relative importance of the variables obtained
from the three sensitivity methods is not expected to be identical,
especially in the case of LHS method where the number of simu-
lations and the number of input variable play important role in the
results. In addition, for LHS method, some input variables (such as
structural modeling variables) are dependent on other variables
(such as seismic hazard and the demand-intensity relation vari-
ables). This leads to division of the variables into three sets with
two matrices of ranking coefficients. Consequently, this makes the
norm E for one group of variable different from the others, which
have an impact on the results. As can be observed in Figs. 12 and
13, the greatest part of the LCC uncertainty is due to the un-
certainty in the drift-intensity relation regression coefficient b.
This may be reduced, partially, by the additional knowledge of
structural response and seismic hazard, but is still disturbed by the
aleatory uncertainty in the nature of the seismic hazard and the
future earthquakes. The figures suggest that uncertainty in the
variables that affect the response, such as modal damping and
plastic hinge strength, have relatively moderate contribution to
the LCC uncertainty. That is, these variables directly reflect the
structural response without the intervention of the aleatory un-
certainty associated with earthquake intensity or profile. The
seismic hazard slope k is found to have the second highest influ-
ence on the LCC uncertainty for both FB-Conv and FB-BRB. Modal
damping and plastic hinge strength prove to play more important
role in the LCC uncertainty in the case of FB-Conv. This can be
attributed to the large impact of these variables in the non-linear
range where the variability in the global response produces large
demand dispersions that lead to more variations in the LCC esti-
mations. However, dispersion in demand and capacity found to
have, relatively, higher effect in case of FB-BRB when compared to
the effect of plastic hinge and damping. Other variables such as
pile driving time delay and the pile driving cyclic load turn out to
have modest impact on the LCC estimation. In the FB-BRB case, the
yield stress and Young’s modulus have almost no effect on the LCC
estimation.

In the sensitivity analysis process, it is observed that some
variables have significant effect if they are uncoupled with other
variables; however, their effect becomes marginal in case they
are coupled with these variables. For example, the b and k vari-
ables show large LCC swings, but when they are coupled, their
effect is insignificant as can be observed in the LCC swing asso-
ciated with the sensitivity factor k/b. Some variables, such as β |D sa
and βC , are dependent on the selection of the hazard records as
well as the response of the structures to these records intensities
and profiles. This means that they are highly affected by the
variability in the selected earthquake records. It is found that as
the variability in the selected hazard (intensity and profile) de-
creases, the contribution of these factors to the LCC variability
also decreases.



Table A1.
Characteristics of the ground motion suit used in the current study.

NGA#a Event Mag. Rjb
b (km) Rrup

c (km)

1785 Hector Mine 7.13 54.7 54.7
862 Landers 7.28 54.2 54.2
1153 Kocaeli- Turkey 7.51 126 127
1800 Hector Mine 7.13 186.8 186.8
835 Landers 7.28 135.2 135.2
1163 Kocaeli- Turkey 7.51 58.3 60
879 Landers 7.28 2.2 2.2

1604 Duzce- Turkey 7.14 182.8 183.6
833 Landers 7.28 144.9 144.9
12 Kern County 7.36 114.6 117.8

1636 Manjil- Iran 7.37 50 50
1638 Manjil- Iran 7.37 174.6 174.6
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The effect of some variables on LCC is filtered out by the
probability of exceedance associated with the hazard level used.
For example, even if the limit state cost variable CLS for the life
safety (LS) and collapse prevention (CP) limit states is much higher
than that of the immediate occupancy (IO) limit state, its effect
fades away because of the low probability of exceedance asso-
ciated with the former limit states. For example when mass vari-
able is maintained at its lower bound, i.e. 10 percentile, as shown
in Table 5(c), and the remaining input variables are maintained to
their best estimates in case of FB-Conv model, PPL(IO) equals to
7.60%.However, this percentage is found to be 3.52% and 2.26% for
PPL(LS) and PPL(CP), respectively. In the FB-BRB case, PPL(IO) equals
to 2.66% and the PPL(LS) and PPL(CP) values are found to be 1.51%
and 1.4%, respectively.
1805 Hector Mine 7.13 185 185
853 Landers 7.28 135.9 135.9
1833 Hector Mine 7.13 72.9 72.9
1602 Duzce- Turkey 7.14 12 12
1148 Kocaeli- Turkey 7.51 10.6 13.5
1799 Hector Mine 7.13 179.3 179.3
892 Landers 7.28 163.5 163.5
886 Landers 7.28 94.5 94.5
1776 Hector Mine 7.13 56.4 56.4
897 Landers 7.28 41.4 41.4
1811 Hector Mine 7.13 91.2 91.2
841 Landers 7.28 89.7 89.7
889 Landers 7.28 141.9 141.9
1167 Kocaeli- Turkey 7.51 145.1 145.1
1634 Manjil- Iran 7.37 75.6 75.6
861 Landers 7.28 156 156
1168 Kocaeli- Turkey 7.51 293.4 293.4
1759 Hector Mine 7.13 176.6 176.6

a Next Generation of Ground-Motion Attenuation Models.
b Joyner-Boore distance (km)”: the horizontal distance to the surface projection

of the rupture plane.
c Closest distance (km) to the fault rupture plane.
8. Summary and conclusion

In this study, the sensitivity of various uncertain input para-
meters for seismic LCC evaluation of offshore platform was in-
vestigated using various methods such as Tornado Diagram Analysis
(TDA), First-Order Second Moment (FOSM), and Latin Hypercube
Sampling (LHS) methods.

The analysis results showed that the uncertainties associated
with the soil-pile have modest effect on the LCC estimation of the
fixed type steel offshore platform. Xfriction proved to be the most
important uncertain parameter among the soil-pile modeling
parameters. Among the structural uncertain parameters, the
variability in plastic hinge strength and damping ratio had the
most significant impact on the LCC, whereas the mass showed
relatively moderate effect. Elastic modulus, and yield stress
showed marginal effects on the LCC estimations. In the loss esti-
mation and seismic hazard uncertain variables, the coefficient b
had a more dominant influence on the LCC variability compared to
the other variables. The seismic hazard slope k variability showed
a high influence on the LCC variability. Seismic hazard, drift ca-
pacity dispersion, and drift demand dispersion had moderate ef-
fect with LCC swings around (0.5–1.0) Co. The initial cost proved to
have the most influential effect among the different cost items of
LCC estimation.

The LCC was found to be particularly sensitive to the variability
in the relation between the drift demand and hazard intensity.
Therefore, potential variation in both hazard intensity and drift
demand are critical considerations for LCC estimation for the
structures considered in the current study. Moreover, the un-
certainties associated with this relation tend to overshadow those
associated with other modeling parameters, such as soil-pile
modeling parameters, yield stress, Young’s modulus, etc. In addi-
tion, the probability of exceeding a certain limit state plays a
crucial role in reflecting the effect of many variables in the LCC
estimation. Careful definition of the important variables, such as
seismic hazard slope k and coefficient b, in the preliminary design
stage of the structure can be critical for adequate estimation of the
total LCC of fixed steel offshore platform structures used in the
current study.

Finally it needs to be mentioned that some statistical data for
offshore structures used in this study were obtained from general
steel structures or from engineering judgements because they
were not available in the literature. The validity of the present
study will be enhanced if more knowledge base for offshore
structures is accumulated.

Appendix A

See Table A1.
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