The political economy of attorney fees: contingent versus hourly fees*

Kyung Hwan Baika, In-Gyu Kimb,**

aDepartment of Economics, Sungkyunkwan University, Seoul 03063, Korea
bDepartment of Economics, Hallym University, Chunchon 24252, Korea

August 2020

Abstract

This paper briefly reviews how attorney services and fees are affected by institutional elements such as remuneration systems, fee shifting rules, types of trial process, and discovery procedures. It also argues that the introduction of the US-style fee system in Europe reflects a change in a political culture: political merits of contingent or conditional fees have become increasingly appreciated over their shortcomings. To describe the US-style and to explore the driving force behind the change in the political culture, it develops two contest models of litigation in which the plaintiff retains an attorney on a contingent fee basis or on an hourly fee basis, but the defendant hires an attorney on an hourly fee basis. In the models, money can buy high-capacity attorneys. It shows that litigants hire the ablest and thus the most expensive attorneys they can afford. Moreover, it finds that the marginal effect of increasing stake (or judgment) size over the attorney's incentive to exert effort is higher under the contingent fee than under the hourly fee. This makes the plaintiff want to choose between the contingent and the hourly fee; thus, it serves as one of the driving force behind the change in the political culture.

Keywords: Contingent and hourly fees; Political economy of attorney services and fees; Effects of wealth and stake size; Attorneys' capacity

JEL classification: K41; K13; D72; J33

*We are grateful to Jacques Crémer, Gil Epstein, Myung Ock Lee and Julian Park for helpful comments and discussions, and to Young Gyu Kim for research assistance. Earlier versions of this paper were presented at the first conference of the Asian Law and Economics Association and at the 2020 Annual Summer Conference of the Korean Econometric Society.

**Corresponding author. Tel.: +82-33-248-1817; fax: +82-33-256-3424.
E-mail address: igkim@hallym.ac.kr (I.-G. Kim)
1. Introduction

Attorneys are a shining example of professional human resources. They provide their clients with professional legal services. Certainly, as legal experts, they perform much better than laymen litigants in evaluating the merits of cases and trying to win the cases.

The attorney services are under the influence of political and legal institutions. For instance, contingent-fee contracts prevail in the United States, and they are frequently blamed for encouraging frivolous lawsuits and thus incurring too much social costs. In contrast, contingent fees were banned for a long time in Europe since *pactum de quota litis* was not allowed by the ethical restrictions of the European Association of Lawyers (see Emons and Garoupa 2006). *Pactum de quota litis* is an agreement entered between a creditor and a third person with regard to recovery of a debt. Even, in the US, ethical restrictions based on the American Bar Association Model Rules of Professional Conduct prevent an attorney from "purchasing" a client's legal claim to recover damages in a civil suit. The ethical rules of Europe and the US seem to be driven by positive political behavior. However, Santore and Viard (2001) provide a different political economy explanation for the positive political behavior: the prohibition of a 100 percent contingent fee and a negative fixed fee can be understood as a means of maintaining rents for members of the legal profession.

Banning contingent fees may stir up a fairness issue: poor litigants who cannot afford litigation costs are obliged to give up lawsuits. To deal with this problem institutionally, most European countries encourage people to use legal expenses insurance. But what should they do with indigent litigants who can't even get the insurance? The only last way an indigent litigant can get help is through legal aid from the government. Although legal aid is positive political behavior, it is increasingly criticized politically because of high and increasing public spending (see Lambert and Chappe 2014).
From a social welfare perspective, it may be desirable to reduce social costs by banning contingent fees. From the litigants' or attorneys' point of view, however, it is better to maximize their gains through a successful remuneration system. Their desire and the criticism of increased public spending for legal aid work as political and market pressure. Because of such pressure, the type of attorney fees has been changing rapidly all over Europe, clearly following the US-style fee system where litigants can choose between the contingent and the hourly fee, but still not to the point of allowing the contingent fee (see Emons and Garoupa 2006). Rather, the United Kingdom started introducing conditional fees in the 1990s followed by Belgium and the Netherlands. Under the conditional fee arrangement, the plaintiff's attorney receives hourly fees plus a bonus if a recovery is obtained by his client and nothing if the case is lost. (Throughout the paper, "she" means a litigant, and "he" means an attorney.) Both contingent and conditional fees pay for performance, however, the former provides a percentage of the trial award while the latter provides a reward unrelated to the recovery amount. Spain, France, Italy, and Portugal have also been considering introduction of conditional fees. Even Germany has relaxed some restrictions on attorney fees by means of third party contingent contracts.

The change in attorney fee systems in Europe can be modeled as a political game between two contesting groups. Namely, one group that defends the status-quo of the ethical restrictions of the European Association of Lawyers and the other group that challenges it by fighting for the US-style fee system. This approach resembles that in Epstein and Nitzan (2004, 2007) who provide a positive economic theory of public-policy determination. Their theory has spawned a series of studies, including Münster (2006); Epstein and Mealem (2009); Epstein et al. (2011); Cardona and Rubi-Barcelo (2016).

The change in attorney fee systems reflects a change in a political culture: political merits of the US-style fee system have become increasingly appreciated over their shortcomings. Epstein et al. (2011) define the political culture as the weights assigned to challengers and status-quo defenders. Why would the challenging contingent or
conditional fees be given a higher weight than the status-quo hourly fees? As explained earlier, one reason is the demand for reducing the budget for legal aid and the other is that litigants and their attorneys believe that contingent or conditional fees may bring them more gains than hourly fees. These demand and belief influence the political culture. To explore whether the belief is correct or not, this paper shall develop two models of litigation contests and compare them.

Attorney services and fees are affected not only by the political culture but also by institutional elements. For instance, the way of charging legal expenses affects the number of lawsuits and thus the volume of attorney services. Under the American fee-shifting rule, each party pays only her own litigation costs including attorney fees, regardless of whether she wins or loses. In contrast, under the English (or British) rule, the loser bears the winner's litigation costs (see Farmer and Pecorino 1999). Compared to the American rule, the English rule seems to contribute more to reducing the number of lawsuits and thus the volume of attorney services.

The types of trial process also affects the volume of attorney services: either inquisitorial procedure or adversarial procedure. The inquisitorial procedure in Europe allows that the court (or the chief judge) is actively involved in investigating the facts of the case. On the other hand, the adversarial procedure in the US is proceeded mostly through arguments among attorneys while the judge takes the role of impartial referee. The adversarial procedure requires more legal efforts than the inquisitorial procedure (see Parisi 2002). Critics of the adversarial system worry that a litigant's probability to prevail in a lawsuit may rely more upon the capacity of her attorney than on the facts of the case and thus, the rich can buy justice, as compared to the inquisitorial system where the chief judge dominates the trial. The political economy of the inquisitorial system emphasizes the idea of preventing the rich from gaining advantage over the poor in litigation. But this is true only when there is a presumption that the judge is a fair referee.
Information asymmetry between a plaintiff and a defendant makes it hard to settle with each other. For instance, the plaintiff may have better information about the damages he has suffered than the defendant, whereas the defendant may be more knowledgeable about his culpability. A discovery process as a pre-trial procedure is prepared to mitigate the information asymmetry (see Baumann and Friehe 2016). Different countries have different procedural laws that stipulate the discovery process, which affects the volume of attorney services.

A contest is defined as a situation in which contestants compete with one another by expending irreversible effort to win a prize. As mentioned in Epstein and Nitzan (2004), lobbying activities, patent races, sports, tournaments, conflict and struggles over monopoly status, minimum wage negotiation, environmental policy and trade policy are typical examples of contests. A contest model is also appropriate for a description of litigation since a plaintiff and a defendant expend irreversible litigation effort to prevail in their case. Moreover, it allows us to investigate strategic interactions between the two sides. Because of such merits, contest models have long been considered to analyze legal disputes. Examples of litigation contests include Plott (1987); Farmer and Pecorino (1999); Hirshleifer and Osborne (2001); Baik and Kim (2007a, b); De Mot and Miceli (2019); Friehe and Wohlschlegel (2019). Parisi and Luppi (2015) provide a succinct but comprehensive review in which they classify applications of the rent-seeking contest model to litigation into several topics such as adversarial and inquisitorial procedures, fee-shifting, consolidation, bifurcation of trials, and tort liability.

This paper considers the effects of litigants' wealth and stake size on compensation schemes which have not been analyzed yet in the literature of litigation contests. The issue of legal advertising is also related to litigants' wealth. If the advertisement is prohibited, the rich may have better information on how to reach able attorneys than the poor. This is because it is very likely that the rich and able attorneys belong to the same high society. A
common argument against legal advertising is that the advertisement might increase frivolous lawsuits (see Gabuthy and Lambert 2018).

Does money buy justice in the US justice system? The murder trial of O.J. Simpson, often characterized as being the "Trial of the Century," may shed light on this question. When it comes to criminal justice, the answer to the question is probably yes. Simpson's army of able attorneys, called the "Dream Team" in the media, made the criminal jury was unable to find beyond a reasonable doubt that he committed murder in the first degree. By contrast, it doesn't seem that the rich can buy civil justice. Simpson's legal team failed to stop the plaintiff's attorneys from convincing the civil jury by the preponderance of evidence that he was liable for the wrongful death of his former wife and her friend. Hunt (1999) provides a comprehensive review of the O.J. Simpson trial.

Why is there such discrepancy between the criminal and the civil justice, as shown in the Simpson case? An obvious explanation for the discrepancy is due to the difference in the level of the burden of proof between criminal and civil cases. To prove allegations in criminal cases, the highest level of the burden of proof is required, called "proof beyond a reasonable doubt." In contrast, civil cases require the lowest level, called "by the preponderance of the evidence," which merely requires that the matter asserted seem more likely true than not. Thus, in February 1997, the civil jury could find Simpson liable for the wrongful death, whereas not guilty in the criminal court in October 1995.

This paper seeks another explanation for the discrepancy: in civil cases, stake size does matter. In order to prevail in a civil case, it is important for a litigant to hire high-capacity attorneys. This is especially true in the adversarial system of litigation in the US. The paper argues that the bigger the stake size of the case, the greater the capacity (or quality) of a plaintiff's attorney under a contingent-fee arrangement. For instance, Simpson, the defendant in the civil court, was ordered to pay $33,500,000 in damages. Though the plaintiff is poor, expectations of such damages could attract able attorneys to
her side. This means that the advantage of high-capacity attorneys is not necessarily with a wealthy defendant if stake size is big enough.

To investigate the effects of litigants' wealth and stake size on litigation outcomes, this paper develops two contest models in which the probability of winning for a litigant depends on opposing attorneys' relative capacity and effort levels. A novelty of this paper is an introduction of attorneys as delegates. See Baik and Kim (1997); Konrad et al. (2004); Katz (2006); Baik and Kim (2007a, b) for delegation in contests. In terms of institutional classification in Parisi and Luppi (2015), the models in this paper adopt the adversarial procedure and the American rule of fee-shifting. In the models, a litigant with more wealth has better access to the pool of high-capacity attorneys than her opponent with less wealth, given the stake size. Similarly, given the wealth level, the greater the stake size, the higher the capacity of attorneys available for the litigants.

The paper first considers a model — called the contingent-fee model — in which the plaintiff retains her attorney on a contingent-fee basis and the defendant does on an hourly-fee basis. In the US, most tort plaintiffs file suit under a contingent-fee arrangement. Kritzer (1990) explains that 87 percent of individual plaintiffs in torts retain their lawyers on a contingent-fee scheme. On the other hand, most plaintiffs in divorce adopt an hourly-fee scheme. Defendants' attorneys both in torts and divorce are usually paid under an hourly fee (see Bebchuk and Guzman 1996; Emons 2007; Kritzer 2002). Many law and economics scholars study contingent fees. Examples include Danzon (1983); Dana and Spier (1993); Rubinfeld and Scotchmer (1993); Miceli (1994); Zamir and Ritov (2010); Baumann and Friehe (2016). This paper does not consider conditional fees since contingent and conditional fees are similar in that both fees pay for performance.

To be more precise, the paper sets up the following two-stage game. In the first stage, each litigant hires her attorney and writes a contract with him, and then the litigants simultaneously announce their attorneys' capacity and their contracts. In the second stage, the attorneys exert their effort simultaneously and independently to win the case. The
plaintiff's attorney under the contingent fee chooses his own effort level, while the defendant with the hourly fee calculates the effort level and has her attorney implement it. Unlike the plaintiff, therefore, the defendant may have to incur some monitoring costs. At the end of the second stage, the winner is determined, and each litigant pays compensation to her attorney according to the contracts written in the first stage. For simplicity, complete information and risk neutrality for litigants and attorneys are assumed.

The paper next considers another model — called the hourly-fee model — in which the plaintiff as well as the defendant adopts the hourly fee. This game runs as follows. In the first stage, each litigant hires her attorney and writes a contract with him. The contract specifies the attorney's hourly-fee rate. Then, the litigants simultaneously announce their attorneys' capacity and their contracts. In the second stage, litigants 1 and 2 choose simultaneously the effort levels which attorneys 1 and 2 will expend, respectively, and then the attorneys expend their effort. At the end of the second stage, the winner is determined, and each litigant pays compensation to her attorney according to the contracts written in the first stage.

The paper first shows, in the two models, that litigants hire the best of the available attorneys they can afford. It then compare the outcomes of the hourly-fee model with those of the contingent-fee model. Both models find that wealth effects on the litigants' expected payoffs are small but positive. This finding seems to be counterintuitive because a wealthier litigant can hire a better attorney so that she can increase her probability of winning and expected payoff. This can be explained, using her strategic and payoff-maximizing behavior. It is true that the wealthier the litigant, the greater her probability of winning with the better attorney. But hiring the better attorney increases her litigation costs because of a higher hourly-fee rate which is increasing in his capacity. Moreover, it could make her opponent aggressive, which in turn lowers her expected payoff. Recognizing such costs and strategic interactions, when the wealthy litigant hires a high-capacity attorney, she makes him less aggressive by asking him to work less. Epstein and
Nitzan (2004, 2007) call it "strategic restraint." Thus, the wealth effects on the litigants' expected payoffs are not so great. This finding hinges critically on the assumption that both litigants can afford to hire their own attorneys. If a litigant is too poor to hire an attorney with the hourly fee or if no attorney is interested in her case with the contingent fee, then she is obliged to give up the suit. In that case, the wealth effect would be extremely great since her opponent wins the case by exerting almost zero effort.

Next, this paper varies stake size. Assuming that an increase in the stake size enhances a litigant's financial ability to hire a better attorney, it is shown that as the stake size increases, a contingent-fee scheme makes an attorney exert more effort than an hourly-fee scheme. This is because, by choosing the contingent fee, a litigant motivates her attorney more strongly to win her case. Thus, if an attorney's initial effort level under the contingent fee is lower than that under the hourly fee, then a reversal of the effort levels occurs as the stake size increases. This provides a theoretical foundation for Kritzer (1990) who conjectures such a reversal empirically, using hypothetical cases.

Since logit-form probability-of-winning functions are employed, as in Function (1) in Section 2, the reversal of the effort levels leads to a reversal of a litigant's expected payoffs. Specifically, if a litigant's initial payoff with the contingent fee is less than that with the hourly fee, then a reversal of the payoffs occurs when the stake size increases. This throws light on the recent tobacco litigation in the US (see Sloan et al. 2005). Since private attorneys earned a huge amount of money in the litigation, the state governments – though able to afford salaried attorneys for the litigation – were blamed politically for hiring them with the contingent fee. The reversal of the payoffs in our analysis implies, however, that the governments' choice of the contingent fee should not be blamed economically if the public wanted the governments to maximize expected payoffs. The reversal of the effort levels also implies that if stake size is big enough, the plaintiff's winning probability with the contingent fee could be greater than the defendant's winning
probability with the hourly fee. This may explain the defeat of O.J. Simpson in his civil case.

Before proceeding, note the relationship between this paper and the litigation literature on the advantage of the "haves" (the rich in this context). In his seminal work, Galanter (1974) proposes that the haves achieve more favorable outcomes in litigation. The haves in his paper, e.g. insurance companies, are financially and organizationally stronger parties, compared to the have-nots. The haves are repeat litigants in litigation, whereas the have-nots are one-shotters. Due to such merits, the haves tend to prevail in litigation, which is empirically supported by a number of scholars (see, for example, Wheeler et al. 1987; Songer et al. 1999). This paper proves that, in accordance with Galanter's proposition, a wealthy litigant can maintain the advantage in terms of expected payoffs. The numerical examples in the paper show, however, that the advantage is not so great. If our model could consider the issue of repeat litigants, the level of the advantage would become greater.

The paper proceeds as follows. Section 2 develops the contingent-fee model in which the plaintiff's attorney works under the contingent fee and the defendant's attorney works under the hourly fee. Section 3 considers the hourly-fee model in which both attorneys work under the hourly fee. Varying stake size, Section 4 compares the outcomes from the two models. Section 5 offers a summary and concluding remarks of the paper.

2. The model of contingent-fee attorneys

Consider a tort litigation in which a plaintiff seeks compensation for damages from a defendant. If the plaintiff wins the lawsuit, she receives a judgment (or stake) V from the defendant. On the other hand, if the plaintiff loses it – that is, if the defendant wins it – she receives nothing from the defendant. The litigants bear their own litigation costs, regardless of the outcome of the lawsuit. This paper models the litigation as a contest in which the two litigants compete to win a prize of V.
The litigants each hire an attorney who exerts effort on her behalf. Let the plaintiff be litigant 1, and let the defendant be litigant 2. The attorney hired by litigant 1 is called attorney 1, and the attorney hired by litigant 2 is called attorney 2. Reflecting typical compensation structures for tort cases in the United States, it is assumed in this section that attorney 1 is hired on a contingent-fee basis – so comes the title of the section – but attorney 2 is hired on an hourly-fee basis. Usually, in tort cases, defendants are large insurance companies, whereas plaintiffs are individuals who may not have enough wealth to hire attorneys under the hourly fee. The insurance companies mostly use in-house attorneys on the hourly-fee basis or get contracts with large law firms on the hourly-fee basis. Garoupa and Gomez-Pomar (2008) argue that large law firms also seem to prefer the hourly fee over the contingent fee. Attorney 1 in the paper is paid a fee that is set as a fixed percentage of \(V \) if litigant 1 wins the lawsuit, and nothing if she loses it. On the other hand, attorney 2 is paid a fee which depends on his capacity and effort level, regardless of the outcome of the lawsuit.

Let \(x_i \) represent the effort level expended by attorney \(i \), \(i = 1, 2 \). Effort levels are nonnegative and are measured in temporal units. Let \(p_i \) be the probability that attorney \(i \) (or litigant \(i \)) wins. Then, \(p_2 = 1 - p_1 \). Following Tullock (1980), the litigation success function for attorney 1 is given by

\[
p_1 = \begin{cases}
\frac{\sigma_1 x_1}{\sigma_1 x_1 + \sigma_2 x_2} & \text{for } x_1 + x_2 > 0 \\
1/2 & \text{for } x_1 + x_2 = 0,
\end{cases}
\]

where \(\sigma_i \) indicates attorney \(i \)'s capacity (or ability) for the litigation, \(i = 1, 2 \). The logit-form probability-of-winning functions as in (1) are widely used in the litigation contest literature. See, for example, Posner (1973); Plott (1987); Farmer and Pecorino (1999); Hirshleifer and Osborne (2001); Parisi (2002). Katz (1987) reports that in the US, legal fees of plaintiffs on average are about one fourth of the amount at stake. Interestingly,
Baik and Kim (2007a, b) and the model in this paper with the logit-form probability-of-winning functions show that, in equilibrium, a litigant's legal fee is about one fourth of V. Function (1) implies two things. First, the litigants have the same degree of fault regarding the case: if $x_1 = x_2$ and $\sigma_1 = \sigma_2$, then attorney 1’s probability of winning equals one half. Second, $\sigma_i > \sigma_j$ implies that attorney i has more capacity than attorney j: if $x_1 = x_2$, then attorney i’s probability of winning is greater than one half. (Throughout the paper, when i and j are used at the same time, it means that $i \neq j$, $i, j = 1, 2$.) The attorneys' litigation success functions have the property that, given attorney j’s positive effort level, attorney i’s probability of winning is increasing in his effort level at a decreasing rate. They have also the property that, given his positive effort level, attorney i’s probability of winning is decreasing in attorney j’s effort level at a decreasing rate.

For each capacity level, there exist at least two attorneys of the capacity. The litigants know which attorney has what capacity. Litigant i hires an attorney whose capacity lies in the real interval $[1, \overline{\sigma}_i]$, where $\overline{\sigma}_i > 1$: in terms of the symbols, $\sigma_i \in [1, \overline{\sigma}_i]$. As explained earlier, a plaintiff (litigant 1) is often an individual, while a defendant (litigant 2) is usually a firm that has a deep pocket. Based on this fact, it is assumed that $\overline{\sigma}_1 \leq \overline{\sigma}_2$. For concise exposition, let $\overline{\sigma}_1 = \overline{\sigma}$ and $\overline{\sigma}_2 = \alpha \overline{\sigma}$, where $\alpha \geq 1$. It is also assumed that the value of $\overline{\sigma}_i$ is determined by both the value of V and litigant i’s wealth level. Note that given i’s wealth, an increase in V raises her expected payoff, which in turn enhances her financial ability to hire better attorneys under the hourly fee scheme. Similarly, under the contingent fee, an increase in V entices better attorneys to work for litigant 1.

If attorney 1 wins the lawsuit, his contingent fee is $\beta_1 V$, where $0 < \beta_1 < 1$. The parameter β_1 is determined by the contract between litigant 1 and attorney 1. Attorney 2’s hourly-fee rate is assumed to equal his capacity, σ_2. Litigant 1 does not monitor attorney 1’s effort level. This is because the fee is paid only if she wins the case. But litigant 2 may have to incur some monitoring costs in order to deal with attorney 2’s possible moral
hazard. It is assumed that, if litigant 2 asks attorney 2 to expend an effort level of x_2, then she must expend a monitoring cost of δx_2, where $\delta > 0$. It is also assumed that δ is exogenously given and publicly known. Note that, if litigant 2 asks attorney 2 to expend more effort, then she must incur more monitoring costs. Thus, if litigant 2 asks attorney 2 to expend an effort level of x_2, then she must expend a total amount of $(\sigma_2 + \delta)x_2$.

It is assumed that the litigants and attorneys are risk-neutral, and try to maximize their expected payoffs. Let π_i represent the expected payoff for attorney i, and Π_i the expected payoff for litigant i. Then the payoff function for attorney 1 is

$$ \pi_1 = p_1 \beta_1 V - x_1. $$

A rent is allowed for each attorney by assuming that he incurs a real cost of 1 per unit of his effort; thus, the higher attorney i's capacity, the more his rent. The payoff function for attorney 2 of capacity σ_2 is $\pi_2 = (\sigma_2 - 1)x_2 \geq 0$. The payoff function for litigant 1 is

$$ \Pi_1 = p_1(1 - \beta_1)V, $$

and that for litigant 2 is

$$ \Pi_2 = (1 - p_1)V - (\sigma_2 + \delta)x_2. $$

This paper formally considers the following two-stage game. In the first stage, each litigant hires her attorney – that is, litigant i chooses σ_i. Litigant 1 writes a contract with attorney 1, which specifies the contingent-fee parameter β_1. Litigant 2 writes a contract with attorney 2, which specifies attorney 2's hourly-fee rate. Recall that attorney 2's hourly-fee rate is assumed to equal his capacity, σ_2. Then, the litigants simultaneously announce their attorneys' capacity and their contracts – that is, litigant 1 announces publicly the value of σ_1 and the value of β_1, and litigant 2 announces publicly the value of σ_2. In the second stage, attorney 1 and litigant 2 choose simultaneously the effort levels which attorneys 1 and 2 will expend, respectively, and then the attorneys expend their
effort. Note that, since attorney 2 is hired on an hourly-fee basis, it is litigant 2 who chooses attorney 2's effort level. Fershtman and Kalai (1997) distinguish between two types of delegation: incentive and instructive delegation. According to their classification, litigant 1 adopts incentive delegation, while litigant 2 adopts instructive delegation. At the end of the second stage, the winner is determined, and each litigant pays compensation to her attorney according to the contracts written in the first stage.

Finally, it is assumed that all of the above is common knowledge among the litigants and attorneys. A subgame-perfect equilibrium is used as the solution concept.

2.1. The second stage of the game

To solve for a subgame-perfect equilibrium of the two-stage game, the paper works backwards. It begins by considering the second stage. In the second stage, values of σ_1, σ_2 and β_1 are publicly known. Attorney 1 seeks to maximize his payoff (2) over his effort level, taking attorney 2's effort level as given. Litigant 2 seeks to maximize her payoff (4) over attorney 2's effort level, taking attorney 1's effort level as given. Each maximization problem yields a reaction function. From the two reaction functions, then, a unique Nash equilibrium in the second stage of the game is obtained. Denote it by $(x_1(\beta_1, \sigma_1, \sigma_2), x_2(\beta_1, \sigma_1, \sigma_2))$.

Lemma 1. The Nash equilibrium in the second stage of the game is

\[
x_1(\beta_1, \sigma_1, \sigma_2) = \frac{\beta_1^2(\sigma_2 + \delta)\sigma_1\sigma_2V}{\{\beta_1(\sigma_2 + \delta)\sigma_1 + \sigma_2\}^2} \quad \text{and} \quad x_2(\beta_1, \sigma_1, \sigma_2) = \frac{\beta_1\sigma_1\sigma_2V}{\{\beta_1(\sigma_2 + \delta)\sigma_1 + \sigma_2\}^2}.
\]

Let $p_1(\beta_1, \sigma_1, \sigma_2)$ be the probability that attorney 1 wins at the Nash equilibrium of the second stage. From expression (1) and Lemma 1, it is obtained

\[
p_1(\beta_1, \sigma_1, \sigma_2) = \frac{\beta_1(\sigma_2 + \delta)\sigma_1}{\{\beta_1(\sigma_2 + \delta)\sigma_1 + \sigma_2\}}.
\]
From expressions (3) and (5), the expected payoff of litigant 1 at the Nash equilibrium of the second stage is obtained:

$$
\Pi_1(\beta_1, \sigma_1, \sigma_2) = \beta_1(1 - \beta_1)(\sigma_2 + \delta)\sigma_1 V/\{\beta_1(\sigma_2 + \delta)\sigma_1 + \sigma_2\}. \quad (6)
$$

Similarly, from expressions (4) and (5), the expected payoff of litigant 2 at the Nash equilibrium of the second stage is obtained:

$$
\Pi_2(\beta_1, \sigma_1, \sigma_2) = \sigma_2^2 V/\{\beta_1(\sigma_2 + \delta)\sigma_1 + \sigma_2\}^2. \quad (7)
$$

2.2. The first stage of the game

Consider the first stage in which each litigant hires her attorney and writes a contract with him. Specifically, in the first stage, litigant 1 chooses the value of \(\sigma_1 \) and the value of \(\beta_1 \), and litigant 2 chooses the value of \(\sigma_2 \).

First consider litigant 1. Taking a value of \(\sigma_2 \) as given, litigant 1 seeks to maximize her expected payoff (6) over \(\sigma_1 \) and \(\beta_1 \). From the first-order condition for maximizing (6) over \(\beta_1 \), the following reaction function is obtained:

$$
\beta_1(\sigma_1, \sigma_2) = [\{\sigma_2^2 + (\sigma_2 + \delta)\sigma_1 \sigma_2\}^{1/2} - \sigma_2]/\{\sigma_2 + \delta\}\sigma_1]. \quad (8)
$$

Substituting (8) into (6), the paper obtains:

$$
\Pi_1(\sigma_1, \sigma_2) = [(\sigma_2 + \delta)\sigma_1 + 2\sigma_2 - 2\{\sigma_2^2 + (\sigma_2 + \delta)\sigma_1 \sigma_2\}^{1/2}] V/(\sigma_2 + \delta)\sigma_1.
$$

Partially differentiating \(\Pi_1(\sigma_1, \sigma_2) \) with respect to \(\sigma_1 \), it obtains \(\partial \Pi_1(\sigma_1, \sigma_2)/\partial \sigma_1 > 0 \).

Next, consider litigant 2. Litigant 2 chooses \(\sigma_2 \) without observing \(\sigma_1 \) and \(\beta_1 \). Thus litigant 2 seeks to maximize her expected payoff (7) over \(\sigma_2 \), given a value of \(\sigma_1 \) and a value of \(\beta_1 \). Partially differentiating \(\Pi_2(\beta_1, \sigma_1, \sigma_2) \) in (7) with respect to \(\sigma_2 \), it obtains \(\partial \Pi_2(\beta_1, \sigma_1, \sigma_2)/\partial \sigma_2 > 0 \).

Lemma 2 summarizes each litigant's choice of her attorney's capacity in equilibrium.
Lemma 2. Litigant \(i\)'s expected payoff is monotonically increasing in \(\sigma_i\); in terms of the symbols, \(\partial \Pi_1(\sigma_1, \sigma_2)/\partial \sigma_1 > 0\) and \(\partial \Pi_2(\beta_1, \sigma_1, \sigma_2)/\partial \sigma_2 > 0\). Therefore, in equilibrium, litigant 1 chooses an attorney of capacity \(\bar{\sigma}\), and litigant 2 chooses an attorney of capacity \(\alpha \bar{\sigma}\): in terms of the symbols, \(\sigma_1^* = \bar{\sigma}\) and \(\sigma_2^* = \alpha \bar{\sigma}\).

The first part of Lemma 2 says that, given the capacity of the opponent's attorney, each litigant's expected payoff increases as she hires an attorney of higher capacity. The explanation is rather straightforward. Consider first litigant 1. Her payoff function can be written as \(\Pi_1(\sigma_1, \sigma_2) = p_1(\sigma_1, \sigma_2)\{1 - \beta_1(\sigma_1, \sigma_2)\}V\), which comes from expression (3). By hiring an abler attorney, she can lower the contingent-fee fraction and increase her probability of winning, which certainly increases her expected payoff. In terms of the symbols, \(\partial \beta_1(\sigma_1, \sigma_2)/\partial \sigma_1 < 0\) and \(\partial p_1(\sigma_1, \sigma_2)/\partial \sigma_1 > 0\), where \(p_1(\sigma_1, \sigma_2) = 1 - \sigma_2/\{\sigma_2^2 + (\sigma_2 + \delta)\sigma_1\sigma_2\}^{1/2}\). Note that it obtains \(p_1(\sigma_1, \sigma_2)\) by substituting (8) into (5). Next, from expression (4), litigant 2's payoff function is \(\Pi_2(\beta_1, \sigma_1, \sigma_2) = \{1 - p_1(\beta_1, \sigma_1, \sigma_2)\}V - (\sigma_2 + \delta)x_2(\beta_1, \sigma_1, \sigma_2)\). Hiring an abler attorney increases litigant 2's probability of winning and thus her gross expected payoff, \(\{1 - p_1(\beta_1, \sigma_1, \sigma_2)\}V\). On the other hand, hiring an abler attorney either increases or decreases her costs, \((\sigma_2 + \delta)x_2(\beta_1, \sigma_1, \sigma_2)\). But the former positive effect on her expected payoff dominates the latter negative effect, if any. Therefore, litigant 2's expected payoff increases as she hires an abler attorney. Lemma 2 implies that, in order to maximize her expected payoff, each litigant has to hire the best of the available attorneys she can afford.

Utilizing Lemma 2 and expression (8), then, the paper obtains the equilibrium contingent-fee parameter:

\[
\beta_1^* = \left[\alpha^2 \bar{\sigma}^2 + \alpha (\alpha \bar{\sigma} + \delta \bar{\sigma}^2)^{1/2} - \alpha \bar{\sigma}\right]/\{(\alpha \bar{\sigma} + \delta \bar{\sigma})\bar{\sigma}\}. \tag{9}
\]
Now, using Lemmas 1 and 2, and expressions (6), (7), and (9), it obtains Lemma 3. It reports the attorneys' effort levels and the litigants' expected payoffs which are specified in the subgame-perfect equilibrium of the two-stage game.

Lemma 3. In the subgame-perfect equilibrium, the effort levels of attorneys 1 and 2 are
\[
x_1^* = \frac{\{\alpha(\alpha + \alpha \bar{\sigma} + \delta)\}^{1/2} - \alpha}{\{(\alpha \bar{\sigma} + \delta)(\alpha + \alpha \bar{\sigma} + \delta)\}} V\] and
\[
x_2^* = \frac{\{\alpha(\alpha + \alpha \bar{\sigma} + \delta)\}^{1/2} - \alpha}{\{(\alpha \bar{\sigma} + \delta)(\alpha + \alpha \bar{\sigma} + \delta)\}} V,
\]
and the expected payoffs of litigants 1 and 2 are
\[
\Pi_1^* = \frac{\{(\alpha + \alpha \bar{\sigma} + \delta)^{1/2} - \alpha^{1/2}\}^{2} V}{(\alpha \bar{\sigma} + \delta)} and \Pi_2^* = \frac{\alpha V}{(\alpha + \alpha \bar{\sigma} + \delta)}.
\]

3. **The model of hourly-fee attorneys**

This section assumes that both attorney 1 and attorney 2 are hired on an hourly-fee basis. This compensation structure is widely used in the US for civil cases such as divorce and contract disputes. Each attorney is paid a fee which depends on his capacity and effort level, regardless of the outcome of the lawsuit. This hourly-fee model looks at the following two-stage game. In the first stage, each litigant hires her attorney — that is, litigant i chooses σ_i — and writes a contract with him. The contract specifies the attorney's hourly-fee rate. Then, the litigants simultaneously announce their attorneys' capacity and their contracts — that is, litigant 1 announces publicly the value of σ_1, and litigant 2 announces publicly the value of σ_2. In the second stage, litigants 1 and 2 choose simultaneously the effort levels which attorneys 1 and 2 will expend, respectively, and then the attorneys expend their effort. At the end of the second stage, the winner is determined, and each litigant pays compensation to her attorney according to the contracts written in the first stage.

Let $\widehat{\Pi}_i$ represent the expected payoff for litigant i. Then, the payoff function for litigant 1 is
\[
\widehat{\Pi}_1 = p_1 V - (\sigma_1 + \delta)x_1,
\]
and that for litigant 2 is
\[
\hat{\Pi}_2 = (1 - p_1)V - (\sigma_2 + \delta)x_2,
\]

where \(p_1 \) is defined by expression (1).

To solve for a subgame-perfect equilibrium of the two-stage game, the paper needs to work backwards. Since the analysis of this game is similar to that of the contingent-fee model in Section 2, it reports the results without explaining the analysis in detail.

Lemma 4. The Nash equilibrium in the second stage of the game is
\[
\hat{x}_1(\sigma_1, \sigma_2) = (\sigma_2 + \delta)\sigma_1\sigma_2V/\{2\sigma_1\sigma_2 + \delta(\sigma_1 + \sigma_2)\}^2 \quad \text{and} \quad \hat{x}_2(\sigma_1, \sigma_2) = (\sigma_1 + \delta)\sigma_1\sigma_2V/\{2\sigma_1\sigma_2 + \delta(\sigma_1 + \sigma_2)\}^2.
\]

As in Lemma 2, \(\hat{\Pi}_i(\sigma_1, \sigma_2) \) is monotonically increasing in \(\sigma_i \): in terms of the symbols, \(\partial\hat{\Pi}_1(\sigma_1, \sigma_2)/\partial\sigma_1 > 0 \) and \(\partial\hat{\Pi}_2(\sigma_1, \sigma_2)/\partial\sigma_2 > 0 \). Thus, litigant 1 chooses an attorney of capacity \(\sigma_1 \) and litigant 2 chooses an attorney of capacity \(\sigma_2 \) in equilibrium: in terms of the symbols, \(\hat{\sigma}_1^* = \sigma_1 = \sigma \) and \(\hat{\sigma}_2^* = \sigma_2 = \alpha\sigma \). Using this and Lemma 4, the paper obtains Lemma 5.

Lemma 5. In the subgame-perfect equilibrium, the effort levels of attorneys 1 and 2 are
\[
\hat{x}_1^* = \alpha(\alpha\sigma + \delta)V/\{2\alpha\sigma + (\alpha + \delta)\}^2 \quad \text{and} \quad \hat{x}_2^* = \alpha(\sigma + \delta)V/\{2\sigma + (\alpha + \delta)\}^2,
\]

and the expected payoffs of litigants 1 and 2 are
\[
\hat{\Pi}_1^* = [(\alpha\sigma + \delta)/\{2\alpha\sigma + (1 + \alpha)\delta\}]^2V \quad \text{and} \quad \hat{\Pi}_2^* = [\alpha(\sigma + \delta)/\{2\alpha\sigma + (1 + \alpha)\delta\}]^2V.
\]

4. The effects of wealth and stake size

This paper now investigates how an increase in \(\alpha \) (the wealth parameter) affects the litigants' equilibrium payoffs in the contingent-fee and the hourly-fee model. In doing so, it begins with a situation in which the value of \(\sigma \) depends solely on the size of \(V \). Put
differently, it is assumed that under the contingent fee, litigant 1’s decision on the capacity of attorney 1 at the beginning point is not affected by her wealth but by the size of V. And then the paper changes the size of α in order to check the wealth effects.

Proposition 1. Fix the level of $\bar{\alpha}$ and δ. Then, $\Pi_1^*(\alpha)$ and $\hat{\Pi}_1^*(\alpha)$ are monotonically decreasing in α, and $\Pi_2^*(\alpha)$ and $\hat{\Pi}_2^*(\alpha)$ are monotonically increasing in α. The rate of decrease and increase is very small, compared with the increasing rate of α. This means that the wealth effects on the litigants’ equilibrium payoffs are very small.

Proposition 1 is illustrated in Figures 1 and 2. The values of Π_1^* and Π_2^* are increasing and decreasing in $\bar{\alpha}$, respectively. If $\bar{\alpha} \geq 2.29$, the initial value of Π_1^* at V becomes to exceed that of Π_2^* (refer to Figure 1). (Throughout the paper, most decimal fractions are rounded off to two decimals, but some decimal fractions to four decimals if necessary.) Throughout the paper, in numerical examples, the paper sets $\delta = 0.1$. The value of δ may be interpreted as a possible overcharge rate. To be specific, attorney i could overcharge his hourly-fee by an amount of δx_i, exploiting his informational advantage on x_i. Interestingly, Kritzer (1990, pp. 135-61) reports that, on average, hourly-fee attorneys spent 49.5 hours and contingent-fee attorneys 45.7 hours in civil litigation in the US. If the difference in hours spent is interpreted as the overcharge, then $\delta = (49.5 - 45.7)/45.7 = 0.08$, which is close to 0.1. Figures 1 and 2 show how an increase in α affects $\Pi_1^*(\alpha)$ and $\hat{\Pi}_1^*(\alpha)$ when $\bar{\alpha} = 2$ and $\delta = 0.1$. As the value of α increases five times, the litigants’ expected payoffs show only a small change of 0.01V. It is easy and intuitive to see that $\partial \Pi_1^*(\alpha)/\partial \alpha < 0$ and $\partial \hat{\Pi}_1^*(\alpha)/\partial \alpha < 0$, and $\partial \Pi_2^*(\alpha)/\partial \alpha > 0$ and $\partial \hat{\Pi}_2^*(\alpha)/\partial \alpha > 0$. But the reason why the rate of decrease and increase is so small needs an explanation. The explanation is based on the litigants’ strategic and payoff-maximizing behavior. Expression (1) implies that an increase in α enhances litigant 2’s probability of winning and thus her gross expected payoff, $(1 - p_1)V$ in (4). At the same
time, however, it also raises her costs because the hourly-fee rate is equal to her attorney's capacity and is increasing in α (see (4) and Lemma 2). Moreover, it could make attorney 1 in the contingent-fee model or litigant 1 in the hourly-fee model aggressive, which in turn may lower litigant 2's expected payoff. Realizing such costs and strategic interactions, in equilibrium, litigant 2 with a high α makes attorney 2 less aggressive by asking him to work less. In the meantime, a decrease in attorney 1's effort level is small. Let's take some numerical examples. When $\bar{\sigma} = 2$ and $\delta = 0.1$, for instance, $\hat{x}_2^* = 0.0807V$ with $\alpha = 1$ and $\hat{x}_2^* = 0.0167V$ with $\alpha = 5$. That is, as the value of α increases five times, attorney 2's equilibrium effort level decreases by about 80%. But there is only a small decrease in attorney 1's effort level. Specifically, $\hat{x}_1^* = 0.0807V$ with $\alpha = 1$ and $\hat{x}_1^* = 0.0802V$ with $\alpha = 5$. Because of such strategic consideration, the wealth effects on the litigants' expected payoffs are not so great. Strategic restraint in Epstein and Nitzan (2004, 2007) applies here.

How does litigant 1's choice of a fee arrangement change the wealth effect on herself? In terms of absolute values, her choice produces little difference. When $\bar{\sigma} = 2$ and $\delta = 0.1$, for instance, $\hat{\Pi}_1^*(\alpha = 1) - \hat{\Pi}_1^*(\alpha = 5) = 0.0061V$ and $\hat{\Pi}_1^*(\alpha = 1) - \hat{\Pi}_1^*(\alpha = 5) = 0.0097V$. The two numerical values show, however, the wealth effects in the contingent-fee model are relatively greater than those in the hourly-fee model. This can be explained as follows. When α increases, by adopting the contingent fee, litigant 1 can drive attorney 1 more strongly to win the lawsuit so that she can reduce the gap in the payoffs.

Until now, the paper has assumed that the amount at stake, V, is fixed. It now varies the value of V. It is very likely that $\bar{\sigma}$ and $\alpha \bar{\sigma}$ rise in proportion to the size of V. This is because an increase in V raises the litigants' expected payoffs, which in turn enhances their financial ability to hire better attorneys under the hourly fee. Under the contingent fee, an increase in V entices better attorneys to work for litigant 1. For the sake of analytical simplicity, it assumes a linear relationship between V and $\bar{\sigma}$: to be specific,
\(\sigma = sV \), where \(s \) is a positive constant. It also assumes that \(\alpha \) is independent of \(V \). It is not clear whether \(\alpha \) in reality is increasing or decreasing in \(V \). Substituting \(\sigma/s \) for \(V \) in Lemmas 3 and 5, it obtains Proposition 2.

Proposition 2. Fix the level of \(\alpha, \delta \) and \(s \). Then, the marginal effect of increasing \(V \) over attorney 1's effort is higher under the contingent fee than it is under the hourly fee. The marginal effect of attorney 1's is also higher than that of attorney 2's. Thus, if the initial effort level of attorney 1 under the contingent fee is lower than that of himself under the hourly fee or that of attorney 2, then a reversal of the effort levels occurs as \(V \) increases.

Proposition 2 is illustrated in Figures 3 and 4. In Proposition 2 and Corollary 1, and Figures 3, 4, 5 and 6, the paper uses \(V \) instead of \(\sigma/s \), though it obtains the results by substituting \(\sigma/s \) for \(V \). This is possible because both the independent and dependent variables in Proposition 2 and Corollary 1 include \(\sigma/s \) and thus, it re-substitutes \(V \) for \(\sigma/s \).

In Figure 3, \(\alpha = 2 \) and \(\delta = 0.1 \), and in Figure 4, \(\alpha = 1 \) and \(\delta = 0.1 \). The figures show how an increase in \(V \) changes the attorneys' equilibrium effort levels in units commensurate with \(V \). First, in the hourly-fee model, given \(\alpha \) and \(\delta \), \(\partial x_1^* / \partial \sigma > 0 \): as in Katz (1988), it is intuitive that given \(s \), an increase in \(\sigma \) (via an increase in \(V \)) leads both attorneys to increase their effort levels.

Second, in the contingent-fee model, given \(\alpha \) and \(\delta \), \(\partial x_2^* / \partial \sigma > 0 \), which is also intuitive. But it is somewhat counterintuitive that the sign of \(\partial x_2^* / \partial \sigma \) is indeterminate. As shown in Figure 3, for instance, \(x_2^* \) is initially increasing in \(V \) but very slowly compared with the increase in \(x_1^* \); it reaches its maximum 0.12\(V \) at 3.13\(V \); then it is very slowly decreasing in \(V \). Why does this happen? Recall that, in the contingent-fee model, litigant 1 adopts incentive delegation with the contingent fee, whereas litigant 2 instructive delegation with the hourly fee. Given attorney 1's effort level, if litigant 2 has attorney 2 with a higher \(\sigma \) put more effort, her winning probability goes up and so does her gross
expected payoff. At the same time, however, it raises her expenses of hourly fees which are increasing in σ and in x_2^*. Moreover, the increase in x_2^* may make attorney 1 under the contingent fee more aggressive. Considering such cost effects and strategic interactions, litigant 2 determines attorney 2's effort level in order to maximize her expected payoff. This results in x_2^* in Figure 3.

Figure 3 shows a reversal of the effort levels caused by a different increasing rate of effort of the two attorneys when V increases. Figure 4 also shows a similar reversal of attorney 1's effort levels caused by the different fee schemes. To see such a reversal empirically, Kritzer (1990, pp. 118-120) takes hypothetical cases and systematically varies the level of stakes. Figure 8-1 in Kritzer (1990) shows that the reversal occurs at about $40,000, though he does not distinguish between the contingent-fee and the hourly-fee model. This paper conjectures, however, that Figure 4 fits his idea better than Figure 3 does. This is because Figure 4 deals with a difference in the same attorney's effort levels when the fee scheme is changed and when there is no wealth effect. If this is the case, $1.67V$ in Figure 4 corresponds to about $40,000 in Kritzer (1990). On the other hand, Figure 3 deals with a difference in the effort levels of the two different attorneys under the different fee schemes. The paper thus concludes that Proposition 2 with Figure 4 may provide a theoretical foundation for the reversal of the effort levels in Kritzer (1990). The explanation for the rationale utilizes the fact that when V increases, the contingent fee makes attorney 1 more aggressive than the hourly fee does.

Next, the paper investigates how an increase in V affects the litigants' equilibrium payoffs in each model. Together with the probability-of-winning function (1), Proposition 2 leads to Corollary 1.

Corollary 1. Fix the level of α, δ and s. Then, the marginal effect of increasing V over litigant 1's expected payoff is greater under the contingent fee than it is under the hourly fee. The marginal effect of litigant 1's is also greater than that of litigant 2's. Thus, if
litigant 1's initial payoff with the contingent fee is less than that of herself or that of litigant 2's, then a reversal of the payoffs occurs as \(V \) increases.

Corollary 1 is illustrated in Figures 5 and 6. In Figure 5, \(\alpha = 2 \) and \(\delta = 0.1 \), which corresponds to Figure 3, and in Figure 6, \(\alpha = 1 \) and \(\delta = 0.1 \), which corresponds to Figure 4. As \(V \) increases, the equilibrium effort ratio \(x_1^*/x_2^* \) or \(x_1^*/\hat{x}_1^* \) increases, shown in Proposition 2. This means that litigant 1's probability of winning with the contingent fee increases. And consequently, as \(V \) increases, the increasing rate of \(\Pi_1^* \) exceeds that of \(\Pi_2^* \) or that of \(\hat{\Pi}_1^* \).

Corollary 1 implies that when the stake size is getting bigger, litigant 1's choice of the contingent fee could become a better choice, compared with her choice of the hourly fee. In Figure 6, for example, litigant 1's expected payoff with the contingent fee exceeds her payoff with the hourly fee at 1.68\(V \). The analysis has an important policy implication: as plaintiffs want to choose between the contingent and the hourly fee, they are likely to exert political influence to change the political culture of attorney fees in Europe. It also has a policy implication for the recent tobacco litigation in the US. State governments as plaintiffs filed lawsuits against tobacco companies seeking reimbursement for medical expenses paid by government insurance agencies attributed to tobacco-related illness. In November 1998, the four major tobacco companies (Philip Morris, R.J. Reynolds, Lorillard and Brown & Williamson) and the attorney general reached the Master Settlement Agreement, under which the companies agreed to pay 46 states about \$206 billion over the next 25 years. The companies settled separately with the four remaining states (Florida, Minnesota, Mississippi and Texas). See Sloan et al. (2005) who provide a succinct review of the recent wave of tobacco litigation. In the tobacco litigation, the states retained private attorneys under the contingent fee, though they were able to afford salaried attorneys for the litigation. As the contingent-fee attorneys earned \$10 or 20 billion, criticism against the state governments has arisen. Corollary 1 with Figure 6 says,
however, that the governments' choice of the contingent fee should not be criticized economically if the public wanted the governments to maximize the reimbursement. Corollary 1 with Figure 5 also says that if stake size is big enough, a plaintiff's winning probability in expression (1) with the contingent fee exceeds that of a defendant with the hourly fee. This may explain the defeat of O.J. Simpson in his civil case.

5. Summary

This paper has briefly reviewed how attorney services and fees are affected by institutional elements such as remuneration systems, fee shifting rules, types of trial process, and discovery procedures. It has also argued that the introduction of the US-style fee system in Europe reflects a change in a political culture: political merits of contingent or conditional fees have become increasingly appreciated over their shortcomings. To explore the driving force behind the change in the political culture, it has developed two contest models of litigation, and compared them. In the contingent-fee model, the plaintiff hires her attorney on a contingent-fee basis, but the defendant does on an hourly-fee basis. In the hourly-fee model, both attorneys work under the hourly fee. It has assumed that the probability of winning for a litigant depends on two opposing attorneys' relative capacity and effort levels.

The paper has found that, in the two models, each litigant hires the best of the available attorneys she can afford; thus, the wealthier a litigant, the abler her attorney. Because of strategic interactions, however, the defendant's wealth contributes only a little to an increase in her expected payoff. Moreover, as stake size increases, the plaintiff can take advantage of the contingent fee which motivates her attorney more strongly to win the case. This may explain how O.J. Simpson's legal team could not prevail in the relevant civil case where the amount at stake was $33,500,000.

The paper has also found that, as the stake size increases, the contingent fee drives the plaintiff's attorney to put more effort than the hourly fee. It means that the contingent
fee may give the plaintiff a more expected payoff than the hourly fee. This makes plaintiffs want to choose between the contingent and the hourly fee; thus, they are likely to exert political influence to change the political culture of attorney fees in Europe. This finding also relieves the state governments in the US of being blamed politically for hiring private attorneys on a contingent-fee basis in the recent tobacco litigation. To be specific, their choice of the contingent fee in such mass tort litigation would bring them more expected payoffs, compared with their choice of the hourly fee, although they can hardly avoid political criticism.

Why does a defendant, unlike a plaintiff, stick to the hourly-fee scheme even when the contingent-fee scheme looks more lucrative. One possible explanation is that in a repeated game, the hourly-fee scheme could bring a litigant more payoffs than the contingent-fee scheme. Note that the model in this paper is a one-shot game. In the real world, a corporate defendant, e.g. an auto insurance company as a liability insurer, is involved in many similar litigations over time. Thus, the corporate defendant as a repeat litigant can easily acquire the "know-how" of keeping attorneys under the hourly fee, whereas the individual plaintiff as an one-shotter may not.

Some extensions of this paper seem interesting: (i) allowing the defendant to choose between the contingent and the hourly fee; (ii) reflecting different degrees of fault for litigants in calculating a litigant's probability of winning; and (iii) considering the case in which litigants can choose between conditional and hourly fees, as in the UK. It leaves these extensions for future research.
Cross References

Tournaments and competition in behavioral economics
Leadership and delegation of authority in behavioral economics
Wealth inequalities in inequality and poverty
The political economy of prestige and earnings in political economy (of human resources)

References

Cheltenham, UK: Edward Elgar Publishing.

Figure 1. The wealth effects on Π_i^* in the contingent-fee model when $\sigma = 2$.

Figure 2. The wealth effects on $\hat{\Pi}_i^*$ in the hourly-fee model when $\sigma = 2$.
Figure 3. A reversal of effort levels in the contingent-fee model when $\alpha = 2$.

Figure 4. A reversal of attorney 1's effort levels in the two models when $\alpha = 1$.
Figure 5. The effects of stake size on Π^*_i in the contingent-fee model when $\alpha = 2$.

Figure 6. The effects of stake size on Π^*_1 and $\hat{\Pi}^*_1$ when $\alpha = 1$.