Summability methods of statistically convergent sequences

Chi-Tung Chang (張其棟)

Department of Applied Mathematics Feng Chia University (逢甲大學應用數學系) Taichung 407, Taiwan

E-mail: ctchang@mail.fcu.edu.tw

July 4, 2016

2 Statistically convergent sequences

3 Matrix maps of statistically convergent sequences

4 Special matrix maps

Let $x = \{x_k\}_{k=0}^{\infty}$ be a complex sequence. Define

$$\|x\|_{p} := \left(\sum_{k=0}^{\infty} |x_{k}|^{p}\right)^{1/p} \quad (1 \le p < \infty) \text{ and } \|x\|_{\infty} := \sup_{k \ge 0} |x_{k}|.$$

We also define

m: the set of all bounded sequences

c: the set of all convergent sequences

 c_0 : the set of all null sequences

 ℓ^{p} : the set of all sequences satisfying $\|x\|_{p} < \infty$ $(1 \leq p < \infty)$

Let $x = \{x_k\}_{k=0}^{\infty}$ be a complex sequence. Define

$$\|x\|_{p} := \left(\sum_{k=0}^{\infty} |x_{k}|^{p}\right)^{1/p} \quad (1 \le p < \infty) \text{ and } \|x\|_{\infty} := \sup_{k \ge 0} |x_{k}|.$$

We also define

m: the set of all bounded sequences

c: the set of all convergent sequences

 c_0 : the set of all null sequences

 $\ell^{p}\!\!:$ the set of all sequences satisfying $\|x\|_{p}<\infty$ $(1\leq p<\infty)$

Let $x = \{x_k\}_{k=0}^{\infty}$ be a complex sequence. Define

$$\|x\|_{p} := \left(\sum_{k=0}^{\infty} |x_{k}|^{p}\right)^{1/p} \quad (1 \le p < \infty) \text{ and } \|x\|_{\infty} := \sup_{k \ge 0} |x_{k}|.$$

We also define

m: the set of all bounded sequences

- c: the set of all convergent sequences
- c_0 : the set of all null sequences

 ℓ^{p} : the set of all sequences satisfying $\|x\|_{p} < \infty$ $(1 \le p < \infty)$

Let $x = \{x_k\}_{k=0}^{\infty}$ be a complex sequence. Define

$$\|x\|_{p} := \left(\sum_{k=0}^{\infty} |x_{k}|^{p}\right)^{1/p} \quad (1 \le p < \infty) \text{ and } \|x\|_{\infty} := \sup_{k \ge 0} |x_{k}|.$$

We also define

m: the set of all bounded sequences

c: the set of all convergent sequences

 c_0 : the set of all null sequences

 $\ell^{p}\!\!:$ the set of all sequences satisfying $\|x\|_{p}<\infty$ $(1\leq p<\infty)$

Theorem

(a)
$$\ell^p \subsetneq c_0 \subsetneq c \gneqq m$$

(b) $(X, \|\cdot\|_{\infty})$, where $X \in \{m, c, c_0\}$, and $(\ell^p, \|\cdot\|_p)$ $(1 \le p < \infty)$ are both Banach spaces.

Let $x = \{x_k\}_{k=0}^{\infty}$ be a complex sequence. Define

$$\|x\|_{p} := \left(\sum_{k=0}^{\infty} |x_{k}|^{p}\right)^{1/p} \quad (1 \le p < \infty) \text{ and } \|x\|_{\infty} := \sup_{k \ge 0} |x_{k}|.$$

We also define

m: the set of all bounded sequences

c: the set of all convergent sequences

 c_0 : the set of all null sequences

 $\ell^{p}\!\!:$ the set of all sequences satisfying $\|x\|_{p}<\infty$ $(1\leq p<\infty)$

Theorem

(a)
$$\ell^p \subsetneqq c_0 \subsetneqq c \gneqq m$$

(b) $(X, \|\cdot\|_{\infty})$, where $X \in \{m, c, c_0\}$, and $(\ell^p, \|\cdot\|_p)$ $(1 \le p < \infty)$ are both Banach spaces

Let $x = \{x_k\}_{k=0}^{\infty}$ be a complex sequence. Define

$$\|x\|_{p} := \left(\sum_{k=0}^{\infty} |x_{k}|^{p}\right)^{1/p} \quad (1 \le p < \infty) \text{ and } \|x\|_{\infty} := \sup_{k \ge 0} |x_{k}|.$$

We also define

m: the set of all bounded sequences

c: the set of all convergent sequences

 c_0 : the set of all null sequences

 ℓ^{p} : the set of all sequences satisfying $\|x\|_{p} < \infty$ $(1 \leq p < \infty)$

Theorem

(a) $\ell^p \subsetneq c_0 \subsetneq c \gneqq m$ (b) $(X, \|\cdot\|_{\infty})$, where $X \in \{m, c, c_0\}$, and $(\ell^p, \|\cdot\|_p)$ $(1 \le p < \infty)$ are both Banach spaces.

Let $B = (b_{nk})_{n,k\geq 0}$ be an infinite matrix, and X, Y be two sequence spaces.

(a) For each sequence $x = \{x_k\}_{k=0}^{\infty}$, we set $Bx = \{(Bx)_n\}_{n=0}^{\infty}$ be the sequence defined by

$$(Bx)_n := \sum_{k=0}^\infty b_{nk} x_k.$$

(b) The set (X, Y) denotes the collection of all B such that for each $x \in X$, Bx is well-defined and $Bx \in Y$.

Let $B = (b_{nk})_{n,k\geq 0}$ be an infinite matrix, and X, Y be two sequence spaces.

(a) For each sequence $x = \{x_k\}_{k=0}^{\infty}$, we set $Bx = \{(Bx)_n\}_{n=0}^{\infty}$ be the sequence defined by

$$(Bx)_n := \sum_{k=0}^{\infty} b_{nk} x_k.$$

(b) The set (X, Y) denotes the collection of all B such that for each $x \in X$, Bx is well-defined and $Bx \in Y$.

Let $B = (b_{nk})_{n,k\geq 0}$ be an infinite matrix, and X, Y be two sequence spaces.

(a) For each sequence $x = \{x_k\}_{k=0}^{\infty}$, we set $Bx = \{(Bx)_n\}_{n=0}^{\infty}$ be the sequence defined by

$$(Bx)_n := \sum_{k=0}^{\infty} b_{nk} x_k.$$

(b) The set (X, Y) denotes the collection of all B such that for each x ∈ X, Bx is well-defined and Bx ∈ Y.

Let $B = (b_{nk})_{n,k\geq 0}$ be an infinite matrix, and X, Y be two sequence spaces.

(a) For each sequence $x = \{x_k\}_{k=0}^{\infty}$, we set $Bx = \{(Bx)_n\}_{n=0}^{\infty}$ be the sequence defined by

$$(Bx)_n := \sum_{k=0}^{\infty} b_{nk} x_k.$$

(b) The set (X, Y) denotes the collection of all B such that for each x ∈ X, Bx is well-defined and Bx ∈ Y.

Definition

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|_*)$ be two semi-normed sequence spaces. Suppose $B \in (X, Y)$.

(a) The semi-norm of the matrix map $B: (X, \|\cdot\|) \to (Y, \|\cdot\|_*)$ given by $x \mapsto Bx$ is defined by

$$\|B\|_{X,Y} = \inf\{M > 0 : \|Bx\|_* \le M\|x\|$$
 for all $x \in X\}$.

(b) B is said to be bounded and denoted by $B \in \mathcal{B}(X, Y)$ if $||B||_{X,Y} < \infty$.

Let $B = (b_{nk})_{n,k\geq 0}$ be an infinite matrix, and X, Y be two sequence spaces.

(a) For each sequence $x = \{x_k\}_{k=0}^{\infty}$, we set $Bx = \{(Bx)_n\}_{n=0}^{\infty}$ be the sequence defined by

$$(Bx)_n := \sum_{k=0}^\infty b_{nk} x_k.$$

(b) The set (X, Y) denotes the collection of all B such that for each x ∈ X, Bx is well-defined and Bx ∈ Y.

Definition

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|_*)$ be two semi-normed sequence spaces. Suppose $B \in (X, Y)$. (a) The semi-norm of the matrix map $B: (X, \|\cdot\|) \to (Y, \|\cdot\|_*)$ given by $x \mapsto Bx$ is defined by

 $\|B\|_{X,Y} = \inf\{M > 0 : \|Bx\|_* \le M\|x\|$ for all $x \in X\}$.

(b) B is said to be bounded and denoted by $B \in \mathcal{B}(X, Y)$ if $||B||_{X,Y} < \infty$.

Let $B = (b_{nk})_{n,k\geq 0}$ be an infinite matrix, and X, Y be two sequence spaces.

(a) For each sequence $x = \{x_k\}_{k=0}^{\infty}$, we set $Bx = \{(Bx)_n\}_{n=0}^{\infty}$ be the sequence defined by

$$(Bx)_n := \sum_{k=0}^{\infty} b_{nk} x_k.$$

(b) The set (X, Y) denotes the collection of all B such that for each x ∈ X, Bx is well-defined and Bx ∈ Y.

Definition

Let $(X, \|\cdot\|)$ and $(Y, \|\cdot\|_*)$ be two semi-normed sequence spaces. Suppose $B \in (X, Y)$.

(a) The semi-norm of the matrix map $B: (X, \|\cdot\|) \to (Y, \|\cdot\|_*)$ given by $x \mapsto Bx$ is defined by

$$\|B\|_{X,Y} = \inf\{M > 0 : \|Bx\|_* \le M\|x\|$$
 for all $x \in X\}$.

(b) *B* is said to be bounded and denoted by $B \in \mathcal{B}(X, Y)$ if $||B||_{X,Y} < \infty$.

Definition

We say that B is regular if $B \in (c, c)$ and for all $x = \{x_k\}_{k=0}^{\infty} \in c$, we have $\lim_{n \to \infty} (Bx)_n = \lim_{k \to \infty} x_k$.

Definition

We say that B is regular if $B \in (c, c)$ and for all $x = \{x_k\}_{k=0}^{\infty} \in c$, we have $\lim_{n \to \infty} (Bx)_n = \lim_{k \to \infty} x_k$.

Theorem (Silverman-Toeplitz Theorem)

$$B = (b_{nk})_{n,k\geq 0} \text{ is regular if and only if } B \text{ satisfies}$$
(a) $\sup_{n\geq 0} \sum_{k=0}^{\infty} |b_{nk}| < \infty$,
(b) $\lim_{n\to\infty} b_{nk} = 0 \text{ for each } k = 0, 1, \cdots$, and
(c) $\lim_{n\to\infty} \sum_{k=0}^{\infty} b_{nk} = 1$.

Definition

We say that B is regular if $B \in (c, c)$ and for all $x = \{x_k\}_{k=0}^{\infty} \in c$, we have $\lim_{n \to \infty} (Bx)_n = \lim_{k \to \infty} x_k$.

A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called statistically convergent to ℓ if for each $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n+1}|\{k\leq n:|x_k-\ell|\geq\epsilon\}|=0,$$

where $|\mathcal{K}|$ denotes the cardinality of $\mathcal{K} \subset \mathbb{N}^0$ (nonnegative integers). In this case, we write st- $\lim_{k \to \infty} x_k = \ell$ or $x_k \stackrel{st}{\to} \ell$.

A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called statistically convergent to ℓ if for each $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n+1}|\{k\leq n:|x_k-\ell|\geq\epsilon\}|=0,$$

where $|\mathcal{K}|$ denotes the cardinality of $\mathcal{K} \subset \mathbb{N}^0$ (nonnegative integers). In this case, we write st- $\lim_{k \to \infty} x_k = \ell$ or $x_k \stackrel{st}{\to} \ell$.

A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called statistically convergent to ℓ if for each $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n+1}|\{k\leq n:|x_k-\ell|\geq\epsilon\}|=0,$$

where |K| denotes the cardinality of $K \subset \mathbb{N}^0$ (nonnegative integers). In this case, we write st- $\lim_{k \to \infty} x_k = \ell$ or $x_k \stackrel{st}{\to} \ell$.

A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called statistically convergent to ℓ if for each $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n+1}|\{k\leq n:|x_k-\ell|\geq\epsilon\}|=0,$$

where |K| denotes the cardinality of $K \subset \mathbb{N}^0$ (nonnegative integers). In this case, we write st- $\lim_{k \to \infty} x_k = \ell$ or $x_k \stackrel{st}{\to} \ell$.

$$x_k = \begin{cases} n^2 & \text{if } k = n^2 \text{ for some } n \\ 0, & \text{otherwise.} \end{cases} \implies st \text{-} \lim_{k \to \infty} x_k = 0.$$

A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called statistically convergent to ℓ if for each $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n+1}|\{k\leq n:|x_k-\ell|\geq\epsilon\}|=0,$$

where $|\mathcal{K}|$ denotes the cardinality of $\mathcal{K} \subset \mathbb{N}^0$ (nonnegative integers). In this case, we write st- $\lim_{k \to \infty} x_k = \ell$ or $x_k \stackrel{st}{\to} \ell$.

Definition

We define

st: the set of all statistically convergent sequences

 st^0 : the set of all statistically null sequences

A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called statistically convergent to ℓ if for each $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n+1}|\{k\leq n:|x_k-\ell|\geq\epsilon\}|=0,$$

where |K| denotes the cardinality of $K \subset \mathbb{N}^0$ (nonnegative integers). In this case, we write st- $\lim_{k\to\infty} x_k = \ell$ or $x_k \stackrel{st}{\to} \ell$.

Definition

We define *st*: the set of all statistically convergent sequences *st*⁰: the set of all statistically null sequences

A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called statistically convergent to ℓ if for each $\epsilon > 0$,

$$\lim_{n\to\infty}\frac{1}{n+1}|\{k\leq n:|x_k-\ell|\geq\epsilon\}|=0,$$

where |K| denotes the cardinality of $K \subset \mathbb{N}^0$ (nonnegative integers). In this case, we write st- $\lim_{k\to\infty} x_k = \ell$ or $x_k \stackrel{st}{\to} \ell$.

Definition

We define st: the set of all statistically convergent sequences st^0 : the set of all statistically null sequences

Theorem

 $c_0 \subsetneqq st^0 \subsetneqq st$ and $c \subsetneqq st$

Let $A = (a_{nk})_{n,k\geq 0}$ be a nonnegative regular matrix.

(a) The A-density of a subset K of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called A-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\left(\{k: |x_k - \ell| \ge \epsilon\}\right) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

Let $A = (a_{nk})_{n,k\geq 0}$ be a nonnegative regular matrix.

(a) The *A*-density of a subset *K* of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called A-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\Big(\{k: |x_k - \ell| \ge \epsilon\}\Big) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

Let $A = (a_{nk})_{n,k\geq 0}$ be a nonnegative regular matrix.

(a) The *A*-density of a subset *K* of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called *A*-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\Big(\{k: |x_k - \ell| \ge \epsilon\}\Big) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

Let $A = (a_{nk})_{n,k\geq 0}$ be a nonnegative regular matrix.

(a) The *A*-density of a subset *K* of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called *A*-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\Big(\{k: |x_k - \ell| \ge \epsilon\}\Big) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

Let $A = (a_{nk})_{n,k\geq 0}$ be a nonnegative regular matrix.

(a) The *A*-density of a subset *K* of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called *A*-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\left(\{k: |x_k - \ell| \ge \epsilon\}\right) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

In such a case, we write $st_{A^-}\lim_{k\to\infty} x_k = \ell$ or $x_k \stackrel{st_A}{\to} \ell$.

If
$$A = C_1 = (c_{nk}^{(1)})_{n,k\geq 0}$$
 is the Cesáro matrix defined by $c_{nk}^{(1)} = \begin{cases} \frac{1}{n+1} & \text{if } k \leq n, \\ 0 & \text{if } k > n, \end{cases}$
 $\implies (1) \text{ becomes } \lim_{n \to \infty} \frac{1}{n+1} |\{k \leq n : |x_k - \ell| \geq \epsilon\}| = 0.$

 \implies The C_1 -statistical convergence is the original statistical convergence.

Let $A = (a_{nk})_{n,k\geq 0}$ be a nonnegative regular matrix.

(a) The *A*-density of a subset *K* of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called *A*-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\left(\{k: |x_k - \ell| \ge \epsilon\}\right) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

In such a case, we write $st_{A^-}\lim_{k\to\infty} x_k = \ell$ or $x_k \stackrel{st_A}{\to} \ell$.

Definition

We define

 st_A : the set of all A-statistically convergent sequences

 st_A^0 : the set of all A-statistically null sequences

Let $A = (a_{nk})_{n,k \ge 0}$ be a nonnegative regular matrix.

(a) The *A*-density of a subset *K* of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called *A*-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\left(\{k: |x_k - \ell| \ge \epsilon\}\right) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

In such a case, we write $st_{A^-}\lim_{k\to\infty} x_k = \ell$ or $x_k \stackrel{st_A}{\to} \ell$.

Definition

We define

 st_A : the set of all A-statistically convergent sequences st_A^0 : the set of all A-statistically null sequences

Let $A = (a_{nk})_{n,k \ge 0}$ be a nonnegative regular matrix.

(a) The *A*-density of a subset *K* of \mathbb{N}^0 is defined by $\delta_A(K) = \lim_{n \to \infty} \sum_{k \in K} a_{nk}$.

(b) A sequence $x = \{x_k\}_{k=0}^{\infty}$ is called *A*-statistically convergent to ℓ if for each $\epsilon > 0$,

$$\delta_{\mathcal{A}}\left(\{k: |x_k - \ell| \ge \epsilon\}\right) = \lim_{n \to \infty} \sum_{k: |x_k - \ell| \ge \epsilon} a_{nk} = 0.$$
(1)

In such a case, we write st_{A} - $\lim_{k\to\infty} x_k = \ell$ or $x_k \stackrel{st_A}{\to} \ell$.

Definition

We define

 st_A : the set of all A-statistically convergent sequences

 st_A^0 : the set of all A-statistically null sequences

Theorem

$$c_0 \subsetneqq st_A^0 \subsetneqq st_A$$
 and $c \subsetneqq st_A$

Let $x = \{x_k\}_{k=0}^{\infty}$ be a sequence. x is called A-statistically bounded if there exists a positive number M such that

$$\delta_{\mathcal{A}}(\{k : |x_k| > M\}) = 0.$$
(2)

For
$$A = C_1$$
, (2) takes the form $\lim_{n \to \infty} \frac{1}{n+1} |\{k \le n : |x_k| > M\}| = 0$. In this case, we say that x is statistically bounded.

Let $x = \{x_k\}_{k=0}^{\infty}$ be a sequence. x is called A-statistically bounded if there exists a positive number M such that

$$\delta_{\mathcal{A}}(\{k: |x_k| > M\}) = 0.$$
(2)

For
$$A = C_1$$
, (2) takes the form $\lim_{n \to \infty} \frac{1}{n+1} |\{k \le n : |x_k| > M\}| = 0$. In this case, we say that x is statistically bounded.

Let $x = \{x_k\}_{k=0}^{\infty}$ be a sequence. x is called A-statistically bounded if there exists a positive number M such that

$$\delta_{\mathcal{A}}(\{k : |x_k| > M\}) = 0.$$
(2)

For $A = C_1$, (2) takes the form $\lim_{n \to \infty} \frac{1}{n+1} |\{k \le n : |x_k| > M\}| = 0$. In this case, we say that x is statistically bounded.

Let $x = \{x_k\}_{k=0}^{\infty}$ be a sequence. x is called A-statistically bounded if there exists a positive number M such that

$$\delta_{\mathcal{A}}(\{k : |x_k| > M\}) = 0.$$
(2)

For $A = C_1$, (2) takes the form $\lim_{n \to \infty} \frac{1}{n+1} |\{k \le n : |x_k| > M\}| = 0$. In this case, we say that x is statistically bounded.

Definition

We define

```
||x||_{st_A}: the infimum of those M satisfying (2)
m_{st_A}: the set of all A-statistically bounded sequences
```

Let $x = \{x_k\}_{k=0}^{\infty}$ be a sequence. x is called A-statistically bounded if there exists a positive number M such that

$$\delta_{\mathcal{A}}(\{k : |x_k| > M\}) = 0.$$
(2)

For
$$A = C_1$$
, (2) takes the form $\lim_{n \to \infty} \frac{1}{n+1} |\{k \le n : |x_k| > M\}| = 0$. In this case, we say that x is statistically bounded.

Definition

We define

```
||x||_{st_A}: the infimum of those M satisfying (2)
m_{st_A}: the set of all A-statistically bounded sequences
```

Let $x = \{x_k\}_{k=0}^{\infty}$ be a sequence. x is called A-statistically bounded if there exists a positive number M such that

$$\delta_A(\{k: |x_k| > M\}) = 0.$$
(2)

For
$$A = C_1$$
, (2) takes the form $\lim_{n \to \infty} \frac{1}{n+1} |\{k \le n : |x_k| > M\}| = 0$. In this case, we say that x is statistically bounded.

Definition

We define

```
||x||_{st_A}: the infimum of those M satisfying (2)
m_{st_A}: the set of all A-statistically bounded sequences
```

Theorem

(a) $c \subset st_A \subset m_{st_A}$ (b) $(X, \|\cdot\|_{st_A})$, where $X \in \{m_{st_A}, st_A\}$, is a semi-normed sequence spaces.

Let $x = \{x_k\}_{k=0}^{\infty}$ be a sequence. x is called A-statistically bounded if there exists a positive number M such that

$$\delta_A(\{k: |x_k| > M\}) = 0.$$
(2)

For
$$A = C_1$$
, (2) takes the form $\lim_{n \to \infty} \frac{1}{n+1} |\{k \le n : |x_k| > M\}| = 0$. In this case, we say that x is statistically bounded.

Definition

We define

```
||x||_{st_A}: the infimum of those M satisfying (2)
m_{st_A}: the set of all A-statistically bounded sequences
```

Theorem

(a) $c \subset st_A \subset m_{st_A}$ (b) $(X, \|\cdot\|_{st_A})$, where $X \in \{m_{st_A}, st_A\}$, is a semi-normed sequence spaces. Question: Suppose that A and D are both nonnegative regular matrices. For which matrix B, we have $B \in (st_A \cap m, st_D)$ holds?

Let
$$B = (b_{nk})_{n,k\geq 0}$$
. If $\{b_{nk}\}_{k=0}^{\infty} \in \ell^1$ for all $n = 0, 1, \cdots$, $\left\{\sum_{k=0}^{\infty} |b_{nk}|\right\}_{n=0}^{\infty}$ is D-statistically bounded,
 $\overline{b}_k = st_{D} - \lim_{n \to \infty} b_{nk}$ exists for each $k = 0, 1, \cdots$, $\overline{b} = st_{D} - \lim_{n \to \infty} \sum_{k=0}^{\infty} b_{nk}$, and

$$st_{D} - \lim_{n \to \infty} \sum_{k \in K} |b_{nk} - \overline{b}_k| = 0$$
 for K with $\delta_A(K) = 0$,

then $B \in (st_A \cap m, st_D)$. Moreover, for $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$,

$$st_{D}-\lim_{n\to\infty}(Bx)_n=\left(\overline{b}-\sum_{k=0}^{\infty}\overline{b}_k\right)st_{A}-\lim_{k\to\infty}x_k+\sum_{k=0}^{\infty}\overline{b}_kx_k$$

and $B:(st_A\cap m,\|\cdot\|_\infty)\to (st_D,\|\cdot\|_{st_D})$ given by $x\mapsto Bx$ satisfies

$$\|B\|_{st_A\cap m, st_D} = \left|\overline{b} - \sum_{k=0}^{\infty} \overline{b}_k\right| + \sum_{k=0}^{\infty} |\overline{b}_k|.$$

Let
$$B = (b_{nk})_{n,k\geq 0}$$
. If $\{b_{nk}\}_{k=0}^{\infty} \in \ell^1$ for all $n = 0, 1, \cdots, \left\{\sum_{k=0}^{\infty} |b_{nk}|\right\}_{n=0}^{\infty}$ is D-statistically bounded,
 $\overline{b}_k = st_{D^-} \lim_{n \to \infty} b_{nk}$ exists for each $k = 0, 1, \cdots, \overline{b} = st_{D^-} \lim_{n \to \infty} \sum_{k=0}^{\infty} b_{nk}$, and

$$st_{D}-\lim_{n\to\infty}\sum_{k\in\mathcal{K}}|b_{nk}-\overline{b}_k|=0 \text{ for } \mathcal{K} \text{ with } \delta_{\mathcal{A}}(\mathcal{K})=0,$$

then $B \in (st_A \cap m, st_D)$. Moreover, for $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$,

$$st_{D}-\lim_{n\to\infty}(Bx)_n=\left(\overline{b}-\sum_{k=0}^{\infty}\overline{b}_k\right)st_{A}-\lim_{k\to\infty}x_k+\sum_{k=0}^{\infty}\overline{b}_kx_k,$$

and $B:(st_A\cap m,\|\cdot\|_\infty)\to (st_D,\|\cdot\|_{st_D})$ given by $x\mapsto Bx$ satisfies

$$\|B\|_{st_A\cap m, st_D} = \left|\overline{b} - \sum_{k=0}^{\infty} \overline{b}_k\right| + \sum_{k=0}^{\infty} |\overline{b}_k|.$$

Let
$$B = (b_{nk})_{n,k\geq 0}$$
. If $\{b_{nk}\}_{k=0}^{\infty} \in \ell^1$ for all $n = 0, 1, \cdots$, $\left\{\sum_{k=0}^{\infty} |b_{nk}|\right\}_{n=0}^{\infty}$ is D-statistically bounded,
 $\overline{b}_k = st_{D^-} \lim_{n \to \infty} b_{nk}$ exists for each $k = 0, 1, \cdots$, $\overline{b} = st_{D^-} \lim_{n \to \infty} \sum_{k=0}^{\infty} b_{nk}$, and

$$st_{D}-\lim_{n\to\infty}\sum_{k\in K}|b_{nk}-\overline{b}_k|=0$$
 for K with $\delta_A(K)=0$,

then $B \in (st_A \cap m, st_D)$. Moreover, for $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$,

$$st_{D^{-}}\lim_{n\to\infty}(Bx)_n=\left(\overline{b}-\sum_{k=0}^{\infty}\overline{b}_k
ight)st_{A^{-}}\lim_{k\to\infty}x_k+\sum_{k=0}^{\infty}\overline{b}_kx_k$$

and $B:(st_A\cap m,\|\cdot\|_\infty)\to (st_D,\|\cdot\|_{st_D})$ given by $x\mapsto Bx$ satisfies

$$\|B\|_{st_A \cap m, st_D} = \left|\overline{b} - \sum_{k=0}^{\infty} \overline{b}_k\right| + \sum_{k=0}^{\infty} |\overline{b}_k|$$

Let
$$B = (b_{nk})_{n,k\geq 0}$$
. If $\{b_{nk}\}_{k=0}^{\infty} \in \ell^1$ for all $n = 0, 1, \cdots$, $\left\{\sum_{k=0}^{\infty} |b_{nk}|\right\}_{n=0}^{\infty}$ is D-statistically bounded,
 $\overline{b}_k = st_{D} - \lim_{n \to \infty} b_{nk}$ exists for each $k = 0, 1, \cdots$, $\overline{b} = st_{D} - \lim_{n \to \infty} \sum_{k=0}^{\infty} b_{nk}$, and

$$st_{D} - \lim_{n \to \infty} \sum_{k \in K} |b_{nk} - \overline{b}_k| = 0$$
 for K with $\delta_A(K) = 0$,

then $B \in (st_A \cap m, st_D)$. Moreover, for $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$,

$$st_{D}-\lim_{n\to\infty}(Bx)_n=\left(\overline{b}-\sum_{k=0}^{\infty}\overline{b}_k\right)st_{A}-\lim_{k\to\infty}x_k+\sum_{k=0}^{\infty}\overline{b}_kx_k$$

and $B:(st_A\cap m,\|\cdot\|_\infty)\to (st_D,\|\cdot\|_{st_D})$ given by $x\mapsto Bx$ satisfies

$$\|B\|_{st_A\cap m, st_D} = \left|\overline{b} - \sum_{k=0}^{\infty} \overline{b}_k\right| + \sum_{k=0}^{\infty} |\overline{b}_k|$$

C.-T. Chang (張其棟) (Feng Chia University)

Let
$$B = (b_{nk})_{n,k\geq 0}$$
. If $\{b_{nk}\}_{k=0}^{\infty} \in \ell^{1}$ for all $n = 0, 1, \cdots$, $\left\{\sum_{k=0}^{\infty} |b_{nk}|\right\}_{n=0}^{\infty}$ is D-statistically bounded,
 $st_{D} - \lim_{n \to \infty} b_{nk} = 1$ for each $k = 0, 1, \cdots$, and
 $st_{D} - \lim_{n \to \infty} \sum_{k \in K} |b_{nk}| = 0$ for K with $\delta_{A}(K) = 0$,
then $B \in (st_{A} \cap m, st_{D})$ and for all $x = \{x_{k}\}_{k=0}^{\infty} \in st_{A} \cap m$,
 $st_{D} - \lim_{n \to \infty} (Bx)_{n} = st_{A} - \lim_{k \to \infty} x_{k}$.
and $B : (st_{A} \cap m, \|\cdot\|_{\infty}) \to (st_{D}, \|\cdot\|_{st_{D}})$ satisfies $\|B\|_{st_{A} \cap m, st_{D}} = 1$.

Let
$$B = (b_{nk})_{n,k\geq 0}$$
. If $\{b_{nk}\}_{k=0}^{\infty} \in \ell^1$ for all $n = 0, 1, \dots, \left\{\sum_{k=0}^{\infty} |b_{nk}|\right\}_{n=0}^{\infty}$ is D-statistically bounded,
 $st_{D} - \lim_{n \to \infty} b_{nk} = 1$ for each $k = 0, 1, \dots$, and
 $st_{D} - \lim_{n \to \infty} \sum_{k \in K} |b_{nk}| = 0$ for K with $\delta_A(K) = 0$,
then $B \in (st_A \cap m, st_D)$ and for all $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$,
 $st_{D} - \lim_{n \to \infty} (Bx)_n = st_A - \lim_{k \to \infty} x_k$.
and $B : (st_A \cap m, \|\cdot\|_{\infty}) \to (st_D, \|\cdot\|_{st_D})$ satisfies $\|B\|_{st_A \cap m, st_D} = 1$.

Let
$$B = (b_{nk})_{n,k\geq 0}$$
. If $\{b_{nk}\}_{k=0}^{\infty} \in \ell^{1}$ for all $n = 0, 1, \cdots$, $\left\{\sum_{k=0}^{\infty} |b_{nk}|\right\}_{n=0}^{\infty}$ is D-statistically bounded,
 $st_{D} - \lim_{n \to \infty} b_{nk} = 1$ for each $k = 0, 1, \cdots$, and
 $st_{D} - \lim_{n \to \infty} \sum_{k \in K} |b_{nk}| = 0$ for K with $\delta_{A}(K) = 0$,
then $B \in (st_{A} \cap m, st_{D})$ and for all $x = \{x_{k}\}_{k=0}^{\infty} \in st_{A} \cap m$,
 $st_{D} - \lim_{n \to \infty} (Bx)_{n} = st_{A} - \lim_{k \to \infty} x_{k}$.
and $B : (st_{A} \cap m, \|\cdot\|_{\infty}) \to (st_{D}, \|\cdot\|_{st_{D}})$ satisfies $\|B\|_{st_{A} \cap m, st_{D}} = 1$.

Let $B = (b_{nk})_{n,k\geq 0}$. Then $B \in (st_A \cap m, c)$ and

$$\lim_{\to\infty} (Bx)_n = st_A - \lim_{k\to\infty} x_k.$$

n

for all $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$ if and only if

$$\sup_{n\geq 0}\sum_{k=0}^{\infty}|b_{nk}|<\infty,\quad \lim_{n\to\infty}\sum_{k=0}^{\infty}b_{nk}=1$$

and

$$\lim_{n\to\infty}\sum_{k\in K} |b_{nk}| = 0 \text{ for all } K \text{ with } \delta_A(K) = 0.$$

Let $B = (b_{nk})_{n,k\geq 0}$. Then $B \in (st_A \cap m, c)$ and

$$\lim_{\to\infty} (Bx)_n = st_A - \lim_{k\to\infty} x_k.$$

n

for all $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$ if and only if

$$\sup_{n\geq 0}\sum_{k=0}^{\infty}|b_{nk}|<\infty,\quad \lim_{n\to\infty}\sum_{k=0}^{\infty}b_{nk}=1$$

and

$$\lim_{n\to\infty}\sum_{k\in K} |b_{nk}| = 0 \text{ for all } K \text{ with } \delta_A(K) = 0.$$

Let $B = (b_{nk})_{n,k\geq 0}$. Then $B \in (st_A \cap m, c)$ and

$$\lim_{\to\infty} (Bx)_n = st_A - \lim_{k\to\infty} x_k.$$

n

for all $x = \{x_k\}_{k=0}^{\infty} \in st_A \cap m$ if and only if

$$\sup_{n\geq 0}\sum_{k=0}^{\infty}|b_{nk}|<\infty,\quad \lim_{n\to\infty}\sum_{k=0}^{\infty}b_{nk}=1$$

and

$$\lim_{n\to\infty}\sum_{k\in K}|b_{nk}|=0 \text{ for all } K \text{ with } \delta_A(K)=0.$$

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The Cesàro matrix $C_{\alpha} = (c_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$c_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{(n-k+\alpha-1)}{n-k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n \end{cases}$$

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The Cesàro matrix $C_{\alpha} = (c_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$c_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{n-k+\alpha-1}{n+\alpha}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n \end{cases}$$

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The Cesàro matrix $C_{\alpha} = (c_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$c_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{n-k+\alpha-1}{n-k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n \end{cases}$$

Corollary

(a) $C_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty} (C_{\alpha}x)_n = st-\lim_{k\to\infty} x_k.$$

$$st_{C_{\alpha}}$$
 - $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The Cesàro matrix $C_{\alpha} = (c_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$c_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{n-k+\alpha-1}{n-k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n \end{cases}$$

Corollary

(a) $C_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty} (C_{\alpha}x)_n = st-\lim_{k\to\infty} x_k.$$

$$st_{C_{\alpha}}$$
 - $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The Cesàro matrix $C_{\alpha} = (c_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$c_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{n-k+\alpha-1}{n-k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n \end{cases}$$

Corollary

(a) $C_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty}(C_{\alpha}x)_n=st-\lim_{k\to\infty}x_k.$$

$$st_{C_{\alpha}}$$
- $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The Cesàro matrix $C_{\alpha} = (c_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$c_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{n-k+\alpha-1}{n-k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n \end{cases}$$

Corollary

(a) $C_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty} (C_{\alpha}x)_n = st-\lim_{k\to\infty} x_k.$$

$$st_{C_{\alpha}}$$
- $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The gamma matrix $\Gamma_{\alpha} = (\gamma_{nk}^{(\alpha)})_{n,k\geq 0}$ of order α is defined by

$$\gamma_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{k+\alpha-1}{k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The gamma matrix $\Gamma_{\alpha} = (\gamma_{nk}^{(\alpha)})_{n,k\geq 0}$ of order α is defined by

$$\gamma_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{k+\alpha-1}{k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Let $\alpha \in \mathbb{R}$ with $-\alpha \notin \mathbb{N}$. The gamma matrix $\Gamma_{\alpha} = (\gamma_{nk}^{(\alpha)})_{n,k\geq 0}$ of order α is defined by

$$\gamma_{nk}^{(\alpha)} = \begin{cases} \frac{\binom{k+\alpha-1}{k}}{\binom{n+\alpha}{n}} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Corollary

If $\alpha \geq 1$, we have $\Gamma_{\alpha} \in (st \cap m, c)$ and $\lim_{n \to \infty} (\Gamma_{\alpha} x)_n = st$ - $\lim_{k \to \infty} x_k$ for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$.

Let $\alpha \in \mathbb{R}$. The Hölder matrix $H_{\alpha} = (h_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$h_{nk}^{(\alpha)} = \begin{cases} \binom{n}{k} \triangle^{n-k} p_k & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases}$$

where $p_k = (k + 1)^{-\alpha}$.

Let $\alpha \in \mathbb{R}$. The Hölder matrix $H_{\alpha} = (h_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$p_{nk}^{(\alpha)} = \begin{cases} \binom{n}{k} \triangle^{n-k} p_k & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases}$$

where $p_k = (k + 1)^{-\alpha}$.

Let $\alpha \in \mathbb{R}$. The Hölder matrix $H_{\alpha} = (h_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$h_{nk}^{(\alpha)} = \begin{cases} \binom{n}{k} \triangle^{n-k} p_k & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases}$$

where $p_k = (k + 1)^{-\alpha}$.

Corollary

(a) $H_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty}(H_{\alpha}x)_n=st-\lim_{k\to\infty}x_k.$$

$$st_{H_{\alpha}}$$
- $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $\alpha \in \mathbb{R}$. The Hölder matrix $H_{\alpha} = (h_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$h_{nk}^{(\alpha)} = \begin{cases} \binom{n}{k} \triangle^{n-k} p_k & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases}$$

where $p_k = (k + 1)^{-\alpha}$.

Corollary

(a) $H_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty}(H_{\alpha}x)_n=st-\lim_{k\to\infty}x_k.$$

$$st_{H_{\alpha}}$$
- $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $\alpha \in \mathbb{R}$. The Hölder matrix $H_{\alpha} = (h_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$h_{nk}^{(\alpha)} = \begin{cases} \binom{n}{k} \triangle^{n-k} p_k & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases}$$

where $p_k = (k + 1)^{-\alpha}$.

Corollary

(a) $H_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty}(H_{\alpha}x)_n=st-\lim_{k\to\infty}x_k.$$

$$st_{H_{\alpha}}$$
- $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $\alpha \in \mathbb{R}$. The Hölder matrix $H_{\alpha} = (h_{nk}^{(\alpha)})_{n,k \geq 0}$ of order α is defined by

$$h_{nk}^{(\alpha)} = \begin{cases} \binom{n}{k} \triangle^{n-k} p_k & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases}$$

where $p_k = (k + 1)^{-\alpha}$.

Corollary

(a) $H_{\alpha} \in (st \cap m, c)$ if and only if $\alpha > 0$. Moreover, for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$,

$$\lim_{n\to\infty}(H_{\alpha}x)_n=st-\lim_{k\to\infty}x_k.$$

$$st_{H_{\alpha}}$$
- $\lim_{k\to\infty} x_k = st$ - $\lim_{k\to\infty} x_k$.

Let $q = \{q_k\}_{k=0}^{\infty}$ be a nonnegative sequence with $q_0 > 0$. For $n = 0, 1, \dots$, set $Q_n = \sum_{k=0}^{n} q_k$. The weighted mean matrix $W_q = (w_{nk})_{n,k \ge 0}$ and the Nörlund matrix $N_q = (u_{nk})_{n,k \ge 0}$ are defined by

$$w_{nk} = \begin{cases} \frac{q_k}{Q_n} & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases} \text{ and } u_{nk} = \begin{cases} \frac{q_{n-k}}{Q_n} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Let $q = \{q_k\}_{k=0}^{\infty}$ be a nonnegative sequence with $q_0 > 0$. For $n = 0, 1, \dots$, set $Q_n = \sum_{k=0}^{n} q_k$. The weighted mean matrix $W_q = (w_{nk})_{n,k \ge 0}$ and the Nörlund matrix $N_q = (u_{nk})_{n,k \ge 0}$ are defined by

$$w_{nk} = \begin{cases} \frac{q_k}{Q_n} & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases} \text{ and } u_{nk} = \begin{cases} \frac{q_{n-k}}{Q_n} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Let $q = \{q_k\}_{k=0}^{\infty}$ be a nonnegative sequence with $q_0 > 0$. For $n = 0, 1, \dots$, set $Q_n = \sum_{k=0}^{n} q_k$. The weighted mean matrix $W_q = (w_{nk})_{n,k \ge 0}$ and the Nörlund matrix $N_q = (u_{nk})_{n,k \ge 0}$ are defined by

$$w_{nk} = \begin{cases} \frac{q_k}{Q_n} & \text{if } k \le n, \\ 0 & \text{if } k > n, \end{cases} \text{ and } u_{nk} = \begin{cases} \frac{q_{n-k}}{Q_n} & \text{if } k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

Corollary

If $q = \{q_k\}_{k=0}^{\infty}$ is a bounded nonnegative sequence with $q_0 > 0$ and $Q_n \ge cn$ for some c > 0 and for all $n = 0, 1, \cdots$, then $W_q, N_q \in (st \cap m, c)$ and

$$\lim_{n\to\infty} (W_q x)_n = \lim_{n\to\infty} (N_q x)_n = st-\lim_{k\to\infty} x_k$$

for all $x = \{x_k\}_{k=0}^{\infty} \in st \cap m$.

Thank you for your attention!