SiO₂ etch characteristics and environmental impact of Ar/C₃F₆O chemistry

Ho Seok Lee, Kyung Chae Yang, Soo Gang Kim, Ye Ji Shin, Dae Woong Suh, Han Dock Song, Nae Eung Lee, and Geun Young Yeom

Citation: Journal of Vacuum Science & Technology A 36, 061306 (2018); doi: 10.1116/1.5027446

View online: https://doi.org/10.1116/1.5027446

View Table of Contents: http://avs.scitation.org/toc/jva/36/6

Published by the American Vacuum Society

Articles you may be interested in

Transient behavior in quasi-atomic layer etching of silicon dioxide and silicon nitride in fluorocarbon plasmas Journal of Vacuum Science & Technology A **36**, 06B101 (2018); 10.1116/1.5049225

Achieving ultrahigh etching selectivity of SiO₂ over Si₃N₄ and Si in atomic layer etching by exploiting chemistry of complex hydrofluorocarbon precursors

Journal of Vacuum Science & Technology A 36, 040601 (2018); 10.1116/1.5035291

Enhanced silicon nitride etching in the presence of F atoms: Quantum chemistry simulation Journal of Vacuum Science & Technology A **36**, 061301 (2018); 10.1116/1.5044647

Helium plasma modification of Si and Si₃N₄ thin films for advanced etch processes Journal of Vacuum Science & Technology A **36**, 041301 (2018); 10.1116/1.5025152

Thermal atomic layer etching of HfO₂ using HF for fluorination and TiCl₄ for ligand-exchange Journal of Vacuum Science & Technology A **36**, 061504 (2018); 10.1116/1.5045130

Quasi atomic layer etching of SiO₂ using plasma fluorination for surface cleaning Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films **36**, 01B106 (2018); 10.1116/1.5003417

SiO₂ etch characteristics and environmental impact of Ar/C₃F₆O chemistry

Ho Seok Lee, ¹ Kyung Chae Yang, ² Soo Gang Kim, ¹ Ye Ji Shin, ² Dae Woong Suh, ³ Han Dock Song, ³ Nae Eung Lee, ^{1,2} and Geun Young Yeom^{1,2,a)}

¹SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon, Gyeonggi-Do 16419, Republic of Korea

²School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi-Do 16419, Republic of Korea

³Wonik Materials Co., Ltd., Research and Development Group, Cheongju 28215, Republic of Korea

(Received 2 March 2018; accepted 19 October 2018; published 20 November 2018)

Perfluorocarbon gases are commonly used for nanoscale etching in semiconductor processing; however, they have the disadvantages of a long lifetime and inducing global warming effects when released into the atmosphere. In this study, the SiO₂ etch characteristics and global warming effects of C₃F₆O gas chemistry, which has a low global warming potential, were compared with those of C₄F₈ chemistry, which is commonly used in semiconductor processing. Using Ar/C₃F₆O, the SiO₂ etch rate was higher and the etch selectivity of SiO₂ over the amorphous carbon hardmask layer was lower than the etch rate and etch selectivity using Ar/C₄F₈/O₂, with all other etch conditions the same. Furthermore, using Ar/C₃F₆O exhibited more anisotropic SiO₂ etch profiles by suppressing the bowing, narrowing, and necking effects compared to the etch profiles using Ar/C₄F₈/O₂. The global warming effects were evaluated by calculating the million metric ton carbon equivalents (MMTCEs) from the volumetric concentrations of the emitted by-product species and process gases, and the results showed that, in the optimized conditions, Ar/C₃F₆O exhibited a lower environmental impact with an MMTCE of <24% than that of Ar/C₄F₈/O₂. Therefore, it is suggested that the Ar/C₃F₆O gas mixture is a potential replacement for Ar/C₄F₈/O₂ because of its lower MMTCE and acceptable SiO₂ etch characteristics. Published by the AVS. https://doi.org/10.1116/1.5027446

I. INTRODUCTION

In semiconductor manufacturing, as device size reduces to the scale of tens of nanometers for better performance and for ultra-large-scale integration, high-aspect-ratio contacts (HARCs) with highly anisotropic etch profiles become an essential part of semiconductor devices such as dynamic random-access memory and 3D NAND. However, the difficulty level of the manufacturing process has drastically increased with the growing degree of integration, and controlling the critical dimension while simultaneously lowering the plasma-induced damage has become critical. For HARC etching, in particular, it is imperative to solve profile distortion problems such as sidewall bowing, bottom distortion, and the notching effect 10 obtain an acceptable etch profile.

Perfluorocarbons (PFCs) such as CF₄, C₂F₆, C₃F₈, and C₄F₈ are used in the etching of dielectrics such as silicon dioxide (SiO₂) and silicon nitride (Si₃N₄) because these chemistries exhibit the desired etch selectivities over silicon or mask layers [i.e., amorphous carbon layers (ACLs) and photoresist] by forming upon them a fluorocarbon polymer of sufficient thickness for selective etching. ^{13–20} Unfortunately, these PFCs are strong global warming gases possessing long atmospheric lifetimes and high global warming potential (GWP) values. Hence, they have significant negative effects on the environment by strongly absorbing infrared radiation. ^{21–23}

As the Paris agreement goes into effect in 2020 followed by the Kyoto protocol commitment, reducing emissions and the use of PFC gases is emerging as a serious issue in the semiconductor and display industries. 24–26 Therefore, in recent years, there has been an increase in research efforts to reduce the emission of PFCs in semiconductor processing by substituting high-GWP PFCs with low-GWP gases or by using PFC gases with high boiling points such as liquid fluorocarbon, where the latter is recoverable as a liquid at the exhaust line after use, that can provide satisfactory levels of performance.^{27–31} For example, attempts to replace high-GWP fluorocarbon gases with low-GWP gases such as C_3F_6 , C_5F_8 , and C_4F_6 have been made. $^{32-36}$ Among them, C₄F₆ is currently used in some contact dielectric etching processes as a replacement for C₄F₈ because it exhibits good etch characteristics. However, a large amount of C_4F_8 mixed with Ar/O₂ is still used in dielectric etching in addition to C₄F₆ to control the etch profile or to maintain a certain C/F ratio. Therefore, it is necessary to investigate other alternative low-GWP PFC gases to replace C₄F₈.

Oxygen-containing fluorocarbon gases such as C_4F_8/O_2 and C_3F_6O have been investigated as low-GWP chamber cleaning gases for the chemical vapor deposition (CVD) of Si_3N_4 or SiO_2 , replacing high-GWP chamber cleaning gases such as SF_6 and NF_3 . 13,31,33,37 Recent studies on C_3F_6O have shown that C_3F_6O/O_2 can be used to remove Si_3N_4 and SiO_2 deposited on the CVD chamber in place of SF_6 or NF_3 . 13,31 In fact, for dielectric etching using C_4F_8 , a gas mixture composed of $Ar/C_4F_8/O_2$ is generally used rather than C_4F_8 alone. Therefore, in this study, the etch characteristics such as

a)Electronic mail: gyyeom@skku.edu

etch rate and etch selectivity of contact dielectric etching were investigated using C₃F₆O, to determine its eligibility as a contact dielectric etchant gas to replace the C₄F₈/O₂ gas mixture. The C₃F₆O has a very short lifetime (<1 year) and an extremely low GWP₁₀₀ (<100) compared to C₄F₈ (lifetime of 3200 years and GWP_{100} of 10 300), as shown in Table I. Therefore, C₃F₆O, which easily decomposes in the atmosphere, can reduce the impact on the environment and the environmental costs during both the plasma-on times and the plasma-off times used to stabilize the process during dielectric etching. To confirm the environmental effects of the Ar/C₃F₆O chemistry quantitatively, its million metric ton carbon equivalent (MMTCE) values were estimated using the concentrations of the by-product species in the exhaust gas and by the GWPs of the by-product species. The results showed that Ar/C₃F₆O is a potential replacement gas mixture for Ar/C₄F₈/O₂, because of its low MMTCE and its acceptable capability of selective etching of SiO₂ over a mask layer.

II. EXPERIMENT

In this study, a home-made dual-frequency capacitivelycoupled plasma (DF-CCP) system was used. The chamber and the bottom/top electrodes were of anodized aluminum. Each electrode was 200 mm in diameter, and the outer side of each electrode was supported by a ceramic ring for insulation. The top electrode was perforated to inject reactive gases into the vacuum chamber uniformly over the wafer surface, and the two electrodes were separated in parallel by a distance of 80 mm. An rf power of 60 MHz was supplied to the top electrode to control the plasma characteristics such as ion densities, radical densities, and their fluxes to the substrate, while 2 MHz rf power was supplied to the bottom electrode to control the ion bombardment energy on the substrate. The chamber was evacuated using a turbo molecular pump (EBARA 1606W-TF) backed by a dry pump (Alcatel ADP 122P), and the process pressure was automatically maintained by adjusting a throttle valve during etching.

A 2μ m-thick SiO₂ layer was deposited on an Si wafer and was subsequently masked with an ACL possessing hole

TABLE I. Atmospheric lifetimes and GWP of various gases.

Acronym, chemical name	Chemical formula	Atmospheric lifetime (years)	GWP_{100}	References
Carbon dioxide	CO_2	50-200	1	34, 35
Carbon monoxide	CO	50-200	3	31
Carbonyl Fluoride	COF_2	50-200	1	31
Carbon tetrafluoride (PFC-14)	CF ₄	50 000	6500	34, 35
Perfluorocyclobutane (PFC-318)	$c-C_4F_8$	3200	8700	34, 35
Hexafluoroethane (PFC-116)	C_2F_6	10 000	9200	34, 35
Octafluoropropane	C_3F_8	2600	7000	34, 35
Hexafluoropropylene oxide	C_3F_6O	<1	<100	13, 28

patterns 100 nm in diameter and 600 nm in thickness, which was used as the hardmask for SiO_2 contact etching. Next, 150/50 sccm of $\mathrm{Ar/C}_3\mathrm{F}_6\mathrm{O}$ (HFPO, hexafluoropropylene oxide) gas mixture and 150/50/10 sccm of $\mathrm{Ar/c}$ - $\mathrm{C}_4\mathrm{F}_8$ (perfluorocyclobutane, PFC-318)/O $_2$ gas mixture were used while varying the power of the source and bias. The operating pressure and substrate temperature were maintained at 30 mTorr and room temperature, respectively.

The plasma characteristics during etching with the Ar/ C₃F₆O and Ar/C₄F₈/O₂ gas mixtures were investigated by optical emission spectroscopy (OES, Andor iStar 734). The etch characteristics such as the etch rates and etch profiles of SiO₂ and the ACL were estimated by field-emission scanning electron microscopy (Hitachi S-4700) using the ACL-patterned SiO₂ wafers. For optimized etch conditions, any ACL that remained on the SiO₂ hole pattern after etching was removed with an inductively coupled plasma system to enable observation of the etched SiO₂ hole pattern. For this, a 13.56 MHz rf source power of 300 W and a separate 13.56 MHz rf bias power of -50 V and $100 \text{ sccm } O_2$ were used, where the operating pressure was maintained at 20 mTorr. The process time was 6 min. In addition, the surface chemistries of the etched SiO₂ blanket unit thin films for Ar/C₃F₆O and Ar/C₄F₈/O₂ were observed using x-ray photoelectron spectroscopy (XPS, VG Microtech Inc., ESCA 2000) to investigate the carbon binding states of fluorocarbon polymer layers remaining on the etched SiO₂ surfaces.

The volumetric concentrations of the by-product PFC species and parent PFC gases were measured using a Fourier-transform infrared (FT-IR, MIDAC I2000) spectroscopy system, which was connected to the exhaust line backed by a rotary pump, as shown in Fig. 1. The MMTCEs were calculated using

$$MMTCE = \sum_{i} \frac{12}{44} \times \frac{M_i(kg) \times GWP_{100i}}{10^9},$$
 (1)

where GWP_{100i} is the global warming potential integrated over a 100-year time horizon and M_i is the total weight of the emitted PFCs, as measured by FT-IR during the process. The values of GWP_{100i} used in the calculation are given in Table I. The effects of Ar/C_3F_6O and $Ar/C_4F_8/O_2$ on global warming during etching were quantified via the MMTCEs.

III. RESULTS AND DISCUSSION

The SiO_2 masked with ACL was etched with Ar/C_3F_6O and $Ar/C_4F_8/O_2$ using the DF-CCP system. The etch rates of

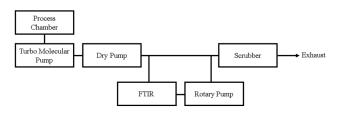


Fig. 1. Schematic of the gas sampling structure of the DF-CCP etch system herein.

the SiO₂ and ACL and the etch selectivity of SiO₂ over the ACL were measured, and the results are shown in Fig. 2. The etch rates of SiO₂ and the ACL were also estimated after etching to a $\sim 1 \,\mu \text{m}$ depth of the SiO₂ contact hole. For this, 100-400 W of 60 MHz rf power for the source and -800 to -1700 V of 2 MHz rf power for the substrate biasing were used, while maintaining 30 mTorr operating pressure for both Ar/C_3F_6O (150/50 sccm) and $Ar/C_4F_8/O_2$ (150/50/10 sccm). The optimized Ar/C₄F₈/O₂ gas composition reported in a previous study²⁰ was used for Ar/C₄F₈/O₂ in this experiment. Figures 2(a) and 2(b) show the etch rates and etch selectivity of SiO2 and the ACL measured as functions of the source power and bias power, respectively, for Ar/C₃F₆O. In Fig. 2(a), when the 60 MHz rf power was varied, the 2 MHz rf bias voltage was maintained at -1100 V; and in Fig. 2(b), when the 2 MHz rf power was varied, the 60 MHz rf source power was maintained at 200 W. To etch to a depth of ~1 μ m in SiO₂ when using C₃F₆O, the process time of Fig. 2(a) was varied as 10 min, 4 min 40 s, 3 min, and 2 min 30 s for 100, 200, 300, and 400 W, respectively. The process time in Fig. 2(b) was varied as 7 min, 4 min 40 s, 3 min 30 s, and 3 min when the conditions were -800, -1100, -1400, and -1700 V, respectively. As shown, the increase in the rf source power from 100 to 400 W [Fig. 2(a)] and bias power from -800 to -1700 V [Fig. 2(b)] increased the etch rates of SiO₂ from 100 to 400 nm/min and from 143 to 333 nm/min, respectively. Even though the etch selectivity of SiO_2/ACL did not vary significantly, the increase in the rf source power beyond 200 W decreased the etch selectivity from 3 to 2.7. This decreased SiO_2 etch selectivity is related to the increased etch rate of the ACL caused by the higher concentration of the F radical resulting from the increased dissociation of C_3F_6O . However, an increase in the rf bias power increased the etch selectivity continuously from 2.5 to 3.2, which is attributed to the difference in the fluorocarbon layer formed on the SiO_2 surface and on the ACL. Therefore, the etch rate of SiO_2 is higher, as compared to that of the ACL, with increasing bias voltage. 38,39

Figures 2(c) and 2(d) show the etch rates and etch selectivity of SiO_2 and the ACL measured as functions of the source power (at -1100 V of bias voltage) and bias power (at 200 W of rf source power), respectively, for the $Ar/C_4F_8/O_2$ chemistry. To etch to a depth of $\sim 1\,\mu\mathrm{m}$ in SiO_2 , the process times in Fig. 2(c) were varied as 8 min $10\,\mathrm{s}$, 7 min $40\,\mathrm{s}$, 6 min, and 4 min $20\,\mathrm{s}$ for 100, 200, 300, and 400 W, respectively; and the process times in Fig. 2(d) were varied as 9 min $20\,\mathrm{s}$, 7 min $40\,\mathrm{s}$, 5 min $30\,\mathrm{s}$, and 4 min for -800, -1100, -1400, and -1700 V, respectively. Similar to the Ar/C_3F_6O chemistry in Figs. 2(a) and 2(b), the increase in the rf source power and bias voltage increased the SiO_2 etch rates. The SiO_2 etch selectivity over the ACL decreased with an increase in the rf source power and slightly increased with

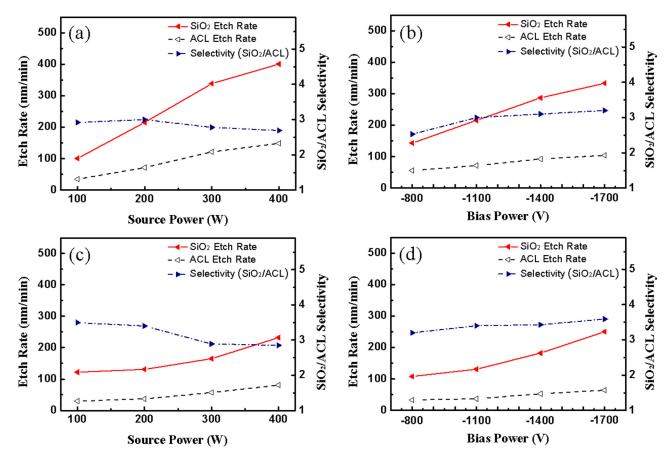


Fig. 2. Etch rates of SiO₂ and ACL and their etch selectivities measured as functions of [(a) and (c)] the source power (at -1100 V of bias voltage using 2 MHz rf bias power) and [(b) and (d)] the bias power (at 200 W of 60 MHz rf source power), respectively, for [(a) and (b)] Ar/C₃F₆O chemistry and [(c) and (d)] Ar/C₄F₈/O₂ chemistry. Ar/C₃F₆O = 150/50 sccm, Ar/C₄F₈/O₂ = 150/50/10 sccm and an operating pressure of 30 mTorr were used.

rf bias power, similar to the case of Ar/C_3F_6O . However, the SiO_2 etch rates were lower and the SiO_2 etch selectivities over the ACL were slightly higher for the $Ar/C_4F_8/O_2$ chemistry compared to the Ar/C_3F_6O chemistry, when using similar conditions.

Figures 3(a)–3(h) show the variation of rf source power while maintaining the rf bias voltage at $-1100 \, \text{V}$ for the Ar/ $\text{C}_3\text{F}_6/\text{O}_2$ and $\text{Ar/C}_4\text{F}_8/\text{O}_2$ chemistries, respectively. Owing to the increased dissociation of $\text{C}_3\text{F}_6\text{O}$ and C_4F_8 , the etch profiles were not vertical when the rf source power was greater than 200 W (not shown). Therefore, 200 W was set as the limit of the rf source power and the SiO_2 etch depth was maintained at about $1\,\mu\text{m}$ by controlling the etch time. As shown in Fig. 3, the increase in the rf bias voltage from $-800 \, \text{to} -1700 \, \text{V}$ improved the etch profile of SiO_2 by exhibiting

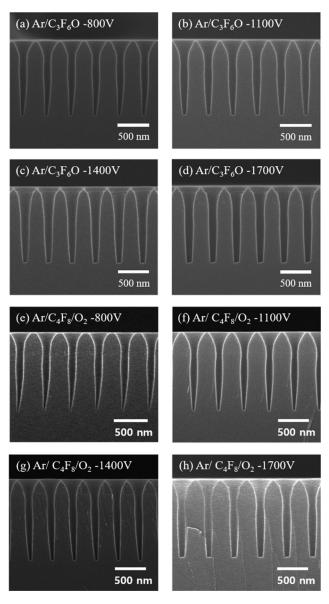


Fig. 3. Etch profiles of SiO_2 masked with ACL for [(a)–(d)] Ar/C₃F₆O and [(e)–(h)] Ar/C₄F₈/O₂ for the different rf bias power conditions given in Figs. 2(b) and 2(d). [(a) and (e)] –800 V, [(b) and (f)] –1100 V, [(c) and (g)] –1400 V, and [(d) and (h)] –1700V. The etch time was controlled to obtain an SiO_2 etch depth of 1 μ m.

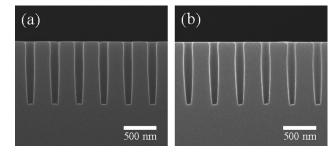


Fig. 4. Etch profiles of only SiO_2 for the conditions of (a) Ar/C_3F_6O and (b) $Ar/C_4F_8/O_2$ in Figs. 3(d) and 3(h) after removing the ACL layer on the etched SiO_2 via O_2 plasma.

less necking, bowing, narrowing, and tilting, which is possibly owing to the increase in the etch rate and etch selectivity with the increase in rf bias power and owing to increased ion energy at the bottom of the etched SiO₂ trench. The SiO₂ etch profiles of Ar/C₃F₆O were more anisotropic compared to those of Ar/C₄F₈ for the same rf bias power conditions, as shown in Fig. 3. In particular, when the rf bias voltage was –1700 V, the etch profile for the Ar/C₃F₆O was the most anisotropic among the conditions investigated.

Using the conditions of Ar/C_3F_6O and $Ar/C_4F_8/O_2$ given in Figs. 3(d) and 3(h), the ACL layer on the etched SiO₂ was removed and the etch profiles of the SiO₂ hole were compared, where the results are shown in Figs. 4(a) and 4(b) for Ar/C_3F_6O and $Ar/C_4F_8/O_2$, respectively. The ACL layer was removed using O₂ plasma, as described in Sec. II. The SiO₂ profile etched with Ar/C_3F_6O was highly anisotropic, while that etched with Ar/C_3F_6O was slightly less anisotropic and exhibited necking and bowing. Therefore, it is deduced that using Ar/C_3F_6O results in comparable SiO₂ etch characteristics as those using $Ar/C_4F_8/O_2$, even though the etch selectivity of SiO₂ over ACL mask with Ar/C_3F_6O is not as high as in the case of $Ar/C_4F_8/O_2$.

Figures 5(a) and 5(b) show the OES data obtained during etching using Ar/C_3F_6O and $Ar/C_4F_8/O_2$ for the respective

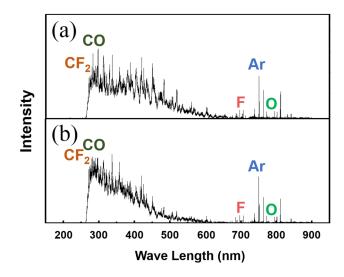


Fig. 5. OES data obtained during etching with (a) Ar/C_3F_6O and (b) $Ar/C_4F_8/O_2$ for the respective optimized etch conditions in Figs. 4(a) and 4(b).

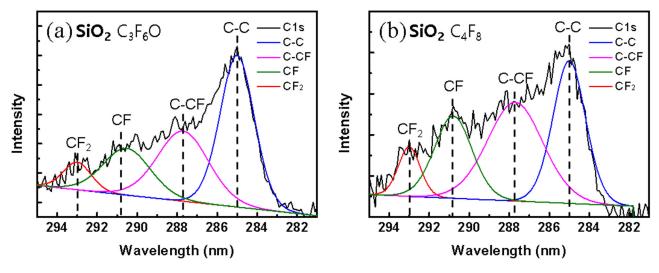


Fig. 6. XPS spectra of C1s narrow scan data on blanket unit thin film SiO_2 after etching using (a) Ar/C_3F_6O and (b) $Ar/C_4F_8/O_2$ for the optimized etch conditions in Fig. 4(a) for Ar/C_3F_6O and Fig. 4(b) for $Ar/C_4F_8/O_2$.

Next, the fluorocarbon polymer layer remaining on the SiO₂ surface during etching using Ar/C₃F₆O and Ar/C₄F₈/O₂ was examined using XPS. Figures 6(a) and 6(b) show the C1s narrow scan data measured from SiO₂ during the etching using the conditions in Fig. 4(a) for Ar/C₃F₆O and Fig. 4(b) for Ar/C₄F₈/O₂. As shown in Fig. 6, the carbon binding peaks related to C-C (285.0 eV), C-CF (287.7 eV), C-F (290.5 eV), and C-F₂ (292.5 eV) were observed. The peak energies were calibrated using the C1 peak at 285.0 eV. The composition of the fluorocarbon layers on the SiO₂ surface was also measured for Ar/C₄F₈/O₂ and Ar/C₃F₆O, and the results are shown in Table II. After the sputter etching, the relative atomic percentages of the material surfaces exhibited a decrease of C and F percentages while those of O and Si were increased. Also, as shown in Table II, the $Ar/C_4F_8/O_2$ exhibited higher percentages of C and F than Ar/C₃F₆O, while the silicon percentage was lower for Ar/C₄F₈/O₂ than for Ar/C₃F₆O, which possibly indicates a thicker fluorocarbon layer on the SiO2 surface etched with $Ar/C_4F_8/O_2$. Therefore, the increased anisotropy of the etch profile for Ar/C₃F₆O compared to that for Ar/C₄F₈/O₂ for the respective optimized conditions given in Figs. 4(a) and 4(b) is inferred to be related to the formation of a thinner sidewall fluorocarbon polymer layer on the etched SiO2 and a lower $CF_x(x = 1, 2)/F$ in the plasma.

The volumetric concentration of the chemical species emitted after SiO₂ etching by the recombination of the

dissociated and etched species and the residual feed gas species were measured for Ar/C₃F₆O and Ar/C₄F₈/O₂ using FT-IR located at the exhaust line between the dry pump and the scrubber, as schematically shown in Fig. 1. Figure 7 shows the emitted chemical species observed by FT-IR during the etching of SiO₂ using Ar/C₃F₆O as a function of rf source power varying as 100, 200, 300, and 400 W [Fig. 2(a)]. The FT-IR measurements were carried out before the plasma-on for 1 min, during the plasma-on for 2 min, and after the plasma-on for 1 min. In addition to C₃F₆O, the emitted species COF₂, CF₄, C₂F₆, CO, and SiF₄ were observed and their concentration was measured as a function of time (Fig. 7). Herein, CO₂ was also observed at concentrations lesser than that of COF2 and, owing to significant fluctuation with pressure, these data were not included in Fig. 7. As shown in Figs. 7(a)-7(d), immediately following plasma-on, the concentration of C₃F₆O decreased significantly owing to the plasma-induced dissociation of C₃F₆O, and the concentration of dissociated/recombined species such as COF₂, C₂F₆, CF₄, and CO increased. With an increase in the rf source power from 100 to 200 W, the concentration of C₃F₆O decreased and, for rf source power equal to and higher than 200 W, the C₃F₆O was completely dissociated. During the duration of plasma-on, an increasing rf source power increased the concentrations of CF_4 and C_2F_6 , (originating from the recombined radicals of C₃F₆O), of CO

Table II. Composition of the SiO_2 surface etched using $Ar/C_4F_8/O_2$ and Ar/C_3F_6O .

Composition (%)						
Etch gas		C1s	F1s	O1s	Si2p	
Ar/C ₃ F ₆ O	As-is	5.9	4.8	58.2	31	
	After 60 s sputter	3.8	2	61.2	33	
Ar/C ₄ F ₈ /O ₂	As-is	4.9	7.6	58.1	29.4	
	After 60 s sputter	4.5	3.1	60.3	32.1	

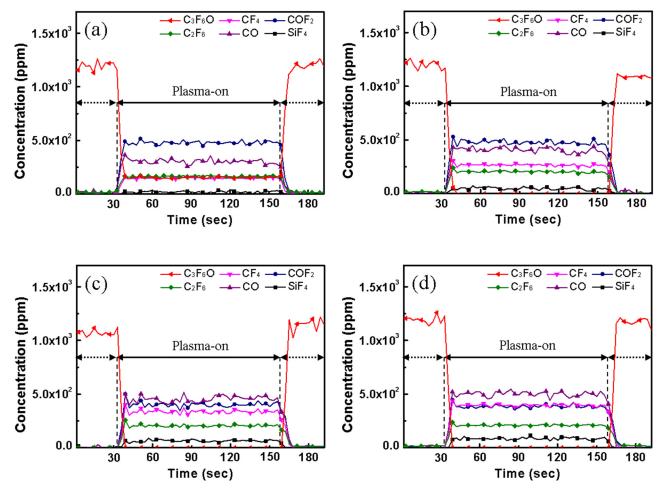


Fig. 7. Concentration of chemical species measured via FT-IR at the exhaust line during SiO_2 etching using Ar/C_3F_6O for the various rf source powers (a) 100, (b) 200, (c) 300, and (d) 400 W [Fig. 2(a)]. FT-IR measurements were carried out for 1 min before plasma-on, during plasma-on for 2 min, and for 1 min after plasma-on. An rf bias power of 2 MHz was maintained at -1100 V.

(originating from the dissociation of C_3F_6O), and of SiF_4 (by-product of the SiO_2 etch). The increased SiF_4 concentration is related to the increased SiO_2 etch rate at the higher rf source power. The concentration of COF_2 , which is an intermediate C_3F_6O dissociated species and also possibly a result of a reaction with CO and F, decreased with increasing rf source power. This decrease in concentration is owing possibly to the further dissociation of COF_2 .

From the above FT-IR data, the global warming effect of Ar/C_3F_6O during the etching of SiO_2 (i.e., 2 min plasma-on duration) was estimated using MMTCE, where the results are shown in Table III for the conditions specified in Figs. 7(a)-7(d). From the estimation of the global warming potential (GWP_{100}) of each emitted species, 99% of the MMTCEs were from C_2F_6 and CF_4 , signifying that these were the most significant emitted species to cause global warming.

Table III. MMTCE values measured as a function of 2 MHz rf bias power. (a) f_{HF} (60 MHz, 100 W)/ f_{LF} (2 MHz, -1100 V), $Ar/C_3F_6O = 150/50 \text{ sccm}$, 30 mTorr. (b) f_{HF} (60 MHz, 200 W)/ f_{LF} (2 MHz, -1100 V), $Ar/C_3F_6O = 150/50 \text{ sccm}$, 30 mTorr. (c) f_{HF} (60 MHz, 300 W)/ f_{LF} (2 MHz, -1100 V), $Ar/C_3F_6O = 150/50 \text{ sccm}$, 30 mTorr. (d) f_{HF} (60 MHz, 400 W)/ f_{LF} (2 MHz, -1100 V), $Ar/C_3F_6O = 150/50 \text{ sccm}$, 30 mTorr.

	Molecular weight		MMTCEs				
Gas	(g/mol)	GWP_{100}	(a)	(b)	(c)	(d)	
C ₃ F ₆ O	166.0219	100	1.31×10^{-10}	2.18×10^{-11}	1.40×10^{-11}	1.53×10^{-11}	
C_2F_6	138.01	9200	9.31×10^{-9}	1.14×10^{-8}	1.16×10^{-8}	1.18×10^{-8}	
CF ₄	88.0043	6500	3.72×10^{-9}	6.71×10^{-9}	8.52×10^{-9}	1.00×10^{-8}	
CO	28.0101	3	1.14×10^{-12}	1.49×10^{-12}	1.68×10^{-12}	1.85×10^{-12}	
COF ₂	66.0069	1	1.41×10^{-12}	1.39×10^{-12}	1.18×10^{-12}	1.13×10^{-12}	
	Total MMTCE		1.32×10^{-8}	1.82×10^{-8}	2.02×10^{-8}	2.19×10^{-8}	

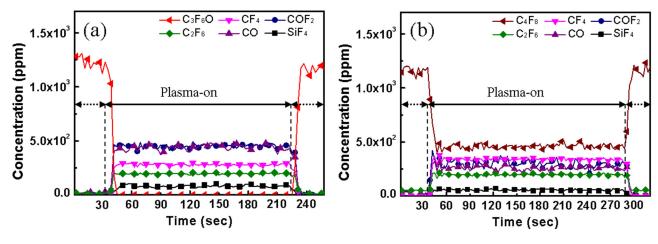


Fig. 8. Concentration of chemical species measured via FT-IR at the exhaust line during SiO_2 etching with the optimized etch conditions for Ar/C_3F_6O and $Ar/C_4F_8/O_2$, respectively, given in Figs. 5(a) and 5(b). The 60 MHz rf source power was 200 W, and the 2 MHz rf bias power was -1700 V. The plasma-on time was controlled to obtain an SiO_2 etch depth of 1 μ m (3 min for Ar/C_3F_6O and 4 min for $Ar/C_4F_8/O_2$).

Contrarily, owing to the low GWPs of CO, COF₂, and C_3F_6O , the MMTCE from these species was less than 1%. In addition, a significant C_3F_6O concentration existed during the plasma-off time as well as before and after the plasma-on time. However, owing to the low GWP of C_3F_6O , the global warming effect is also very low.

For the optimized etch conditions of Ar/C_3F_6O and $Ar/C_4F_8/O_2$ specified in Figs. 5(a) and 5(b), the volumetric concentrations of the chemical species emitted after SiO_2 etching were also measured using FT-IR (Fig. 8) and their MMTCEs were calculated (Table IV). As shown in Fig. 8(a) for Ar/C_3F_6O and Fig. 8(b) for $Ar/C_4F_8/O_2$, all of the C_3F_6O was dissociated during the plasma-on duration in the former and a certain amount of C_4F_8 remained in the latter. The species with the highest volumetric concentration in the emitted gas were CO and COF_2 for Ar/C_3F_6O , owing to the significant dissociation of C_3F_6O ; and C_4F_8 and CF_4 for $Ar/C_4F_8/O_2$ owing to the lesser dissociation thereof.

When the MMTCE values were compared, as shown in Table IV, the MMTCE of Ar/C_3F_6O was about 24% that of $Ar/C_4F_8/O_2$ during the plasma-on time for etching a 1 μ m depth in SiO₂ (3 min for Ar/C_3F_6O and 4 min for $Ar/C_4F_8/O_2$). If the plasma-off time (1 min before plasma-on and 1

Table IV. MMTCE values for the Ar/C₃F₆O and Ar/C₄F₈/O₂ chemistries. (a) $f_{\rm HF}$ (60 MHz, 200 W)/ $f_{\rm LF}$ (2 MHz, -1700 V), Ar/C₃F₆O = 150/50 sccm, 30 mTorr. (b) $f_{\rm HF}$ (60 MHz, 200 W)/ $f_{\rm LF}$ (2 MHz, -1700 V), Ar/C₄F₈/O₂ = 150/50/10 sccm, 30 mTorr.

Molecular weight			MMTCEs		
Gas	(g)	GWP_{100}	(a)	(b)	
C ₃ F ₆ O	166.0219	100	2.26×10^{-11}	0	
C_2F_6	138.01	9200	1.67×10^{-8}	2.26×10^{-8}	
CF ₄	88.0043	6500	1.06×10^{-8}	1.74×10^{-8}	
CO	28.0101	3	2.47×10^{-12}	1.97×10^{-12}	
COF_2	66.0069	1	2.00×10^{-12}	1.78×10^{-12}	
C_4F_8	200.03	8700	0	7.44×10^{-8}	
Total MMTCE			2.73×10^{-8}	1.14×10^{-7}	

min after plasma-on) is included, the MMTCE of Ar/C_3F_6O was about 17% that of $Ar/C_4F_8/O_2$ (not shown) owing to the high GWP for C_4F_8 .

Therefore, by using Ar/C₃F₆O instead of Ar/C₄F₈/O₂, a significant improvement in environmental impact can be achieved while maintaining acceptable SiO₂ etch characteristics.

IV. CONCLUSIONS

The SiO₂ etch characteristics and global warming effects of Ar/C₃F₆O gas chemistry were compared to those of the Ar/C₄F₈/O₂ chemistry using a DF-CCP etch system while varying the 60 MHz rf source power and the 2 MHz rf bias power. For similar rf source power and rf bias power conditions, the SiO₂ etch rates were generally higher for Ar/ C₃F₆O than for Ar/C₄F₈/O₂, whereas the etch selectivity over the ACL was generally lower for Ar/C₃F₆O than for Ar/ C₄F₈/O₂. This difference in etch selectivity is owing to the higher F/CF_x present in the plasma and the lower fluorocarbon layer thickness on the etched SiO₂ surface when using Ar/C₃F₆O because of the greater dissociation of C₃F₆O than of C₄F₈ under similar conditions. At the optimized etch conditions of 200 W rf source power and -1700 V rf bias voltage, the etch profile of SiO₂ with Ar (150 sccm)/C₃F₆O (50 sccm) was more anisotropic compared to that with Ar $(150 \text{ sccm})/C_4F_8$ $(50 \text{ sccm})/O_2$ (10 sccm) owing to suppression of bowing, narrowing, and necking. In these optimized conditions, Ar/C₃F₆O exhibited a much lower MMTCE value that was <24% that of Ar/C₄F₈/O₂, indicating a much lower global warming effect. Therefore, the C₃F₆O chemistry can be a potential replacement for the C₄F₈/O₂ chemistry because of the superior SiO₂ etch characteristics of Ar/ C₃F₆O compared to those of Ar/C₄F₈/O₂, as well as its reduced global warming effects.

ACKNOWLEDGMENTS

This research work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP)

and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20172010105910).

- ¹R. F. Pease and S. Y. Chou, Proc. IEEE **96**, 248 (2008).
- ²K. Kim and G. Jeong, *IEEE International Electron Device Meeting*, Washington, DC, 10–12 December 2007 (IEEE, Washington, DC, 2007).
- ³N. H. Kim, M. H. Jeon, T. H. Kim, and G. Y. Yeom, J. Nanosci. Nanotechnol. **15**, 8667 (2015).
- ⁴S. C. Park, S. H. Lim, C. H. Shin, G. J. Min, C. J. Kang, H. K. Cho, and J. T. Moon, Thin Solid Films **515**, 4923 (2007).
- S. H. Choi, J. J. Vegh, and K. K. Chi, U.S. patent 9,484,215 (6 October 2016).
 H. Abe, M. Yoneda, and N. Fujiwara, Jpn. J. Appl. Phys. 47, 1435 (2008).
- ⁷D. B. Graves, IEEE Trans. Plasma Sci. **22**, 31 (1994).
- ⁸J. C. Arnold and H. H. Sawin, J. Appl. Phys. **70**, 5314 (1991).
- ⁹T. Nozawa, T. Kinoshita, T. Nishizuka, A. Narai, T. Inoue, and A. Nakaue, Jpn. J. Appl. Phys. **34**, 2107 (1995).
- ¹⁰N. Fujiwara, S. Ogino, T. Maruyama, and M. Yoneda, Plasma Sources Sci. Technol. 5, 126 (1996).
- ¹¹M. Miyake, N. Negishi, M. Izawa, K. Yokogawa, M. Oyama, and T. Kanekiyo, Jpn. J. Appl. Phys. 48, 08HE01 (2009).
- ¹²M. Izawa, N. Negishi, K. Yokogawa, and Y. Momonoi, Jpn. J. Appl. Phys. **46**, 7870 (2007).
- ¹³K. C. Yang, S. W. Park, and G. Y. Yeom, Sci. Adv. Mater. **8**, 2253 (2016).
- ¹⁴D. Zhang and M. J. Kushner, J. Vac. Sci. Technol. A **19**, 524 (2001).
- ¹⁵W. T. Tsai, H. P. Chen, and W. Y. Hsien, J. Loss Prev. Process Ind. 15, 65 (2002).
- ¹⁶Y. Miyawaki et al., J. Appl. Phys. **52**, 016201 (2013).
- ¹⁷J. W. Butterbaugh, D. C. Gray, and H. H. Sawin, J. Vac. Sci. Technol. B 9, 1461 (1991).
- ¹⁸C. C. Allgood, J. Fluorine Chem. **122**, 105 (2003).
- ¹⁹T. E. F. M. Standaert, M. Schaepkens, N. R. Rueger, P. G. M. Sebel, and G. S. Oehrlein, J. Vac. Sci. Technol. A 16, 239 (1998).

- ²⁰M. H. Jeon, A. K. Mishra, S. K. Kang, K. N. Kim, I. J. Kim, S. B. Lee, T. H. Sin, and G. Y. Yeom, Curr. Appl. Phys. 13, 1830 (2013).
- ²¹D. Betowski, C. Bevington, and T. C. Allison, Environ. Sci. Technol. 50, 790 (2016).
- ²²T. R. Karl and K. E. Trenberth, Science **302**, 1719 (2003).
- ²³S. Nakamura, M. Itano, H. Aoyama, K. Shibahara, S. Yokoyama, and M. Hirose, Jpn. J. Appl. Phys. 42, 5759 (2003).
- ²⁴UNFCCC, C.F., 2015, Adoption of the Paris Agreement.
- ²⁵E. L. Schipper, RECIEL **15**, 82 (2006).
- ²⁶J. P. Chang and J. W. Coburn, J. Vac. Sci. Technol. A **21**, S145 (2003).
- ²⁷I. Namose, IEEE Trans. Semicond. Manuf. **16**, 429 (2003).
- ²⁸F. Fracassi, R. D'Agostino, A. Fornelli, and T. Shirafuji, Jpn. J. Appl. Phys. 41, 6287 (2002).
- ²⁹S. H. Han, H. W. Park, T. H. Kim, and D. W. Park, Clean Technol. 17, 250 (2011).
- ³⁰R. Chatterjee, S. Karecki, L. Pruette, and R. Reif, Proc. Electrochem. Soc. 99, 251 (1999).
- ³¹K. Y. Kim, H. K. Moon, N. E. Lee, B. H. Hong, and S. H. Oh, Electron. Mater. Lett. 11, 93 (2015).
- ³²M. B. Chang and J. S. Chang, Ind. Eng. Chem. Res. **45**, 4101 (2006).
- ³³I. J. Kim, H. K. Moon, J. H. Lee, N. E. Lee, J. W. Jung, and S. H. Cho, Microelectron. Reliab. **52**, 2970 (2012).
- ³⁴Y. Deng and D. Xiao, Jpn. J. Appl. Phys. **53**, 096201 (2014).
- ³⁵R. Raju, D. Kudo, Y. Kubo, T. Inaba, and H. Shido, Jpn. J. Appl. Phys. 42, 280 (2003).
- ³⁶M. Ooka and S. Yokoyama, Jpn. J. Appl. Phys. **43**, 3586 (2004).
- ³⁷J. H. Kim, J. W. Bae, C. H. Oh, K. J. Kim, N. E. Lee, and G. Y. Yeom, Jpn. J. Appl. Phys. 41, 6570 (2002).
- ³⁸B. S. Kwon, J. S. Kim, N.-E. Lee, and J. W. Shon, J. Electrochem. Soc. 157, D135 (2010).
- ³⁹D. Zhang and M. J. Kushner, "Surface reaction mechanisms in plasma etching processes," Ph.D. thesis (University of Illinois at Urbana-Champaign, 2000).