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A B S T R A C T

In this study, we successfully demonstrate the fabrication of a MoS2-graphene heterostructure (MGH) on a 4 inch
wafer at 300 °C by depositing a thin Mo film seed layer on graphene followed by sulfurization using H2S plasma.
By utilizing Raman spectroscopy and high-resolution transmission electron microscopy, we have confirmed that
5–6 MoS2 layers with a large density of sulfur vacancies are grown uniformly on the entire substrate. The
chemical composition of MoS2 on graphene was evaluated by X-ray photoelectron spectroscopy, which con-
firmed the atomic ratio of Mo to S to be 1:1.78, which is much lower than the stoichiometric value of 2 from
standard MoS2. To exploit the properties of the nanocrystalline and defective MGH film obtained in our process,
we have utilized it as a catalyst for hydrodesulfurization and as an electrocatalyst for the hydrogen evolution
reaction. Compared to MoS2 grown on an amorphous SiO2 substrate, the MGH has smaller onset potential and
Tafel slope, indicating its enhanced catalytic performance. Our practical growth approach can be applied to
other two-dimensional crystals, which are potentially used in a wide range of applications such as electronic
devices and catalysis.

1. Introduction

Realization of two-dimensional (2D) heterostructures has been in-
tensively studied in view of their unique chemical, physical, and elec-
trical properties [1–4]. Thus far, the main strategy for the preparation
of a 2D heterostructure has been based on the sequential stacking of the
layered materials using wet or dry transfer methods [5,6]. Ideally, this
method allows for a conceptually new class of flexible and transparent
films, with applications in batteries, electronic devices, and electro-
chemical cells [7–9]. However, these methods require time-consuming
and complicated transfer processes, which also generate defects or re-
sidues at the interface of the 2D heterostructure [10]. The conventional
thermal chemical vapor deposition (CVD) method using thermal de-
composition of feedstocks, is considered a practical approach for the
manufacture of 2D materials, whereby high-quality atomic scale het-
erostructures over large area can be obtained [11]. In particular, gra-
phene, which is flexible, transparent, and highly conductive, is an ideal
template to synthesize various transition metal dichalcogenide (TMDC)
materials [12–14]. However, CVD reactions need relatively high growth

temperatures (600–1000 °C) [15–17], which is incompatible with the
complementary metal-oxidesemiconductor (CMOS) process and can
therefore increase the total thermal budget in device fabrication
[18–20]. To overcome this limitation, plasma-enhanced CVD (PECVD)-
based synthesis technique has been introduced for 2D materials
[21,22]. Although initial installation cost of PECVD system is higher
than that of typical CVD system, in the presence of accelerated en-
ergetic electrons, excited molecules, free radicals, photons, and other
active species in the plasma, the controlled growth of 2D materials can
be realized at a relatively lower temperature. Our group recently de-
monstrated the low-temperature growth of uniform MoS2 on a flexible
plastic substrate [23,24].

In view of its tunable band gap and relatively high carrier mobility,
MoS2 has been investigated for applications in future electronic devices
[25]. In addition, defects and edges of MoS2 on the basal plane can act
as active catalyst for hydro-desulfurization, due to which MoS2 is
considered as a strong candidate to replace currently used noble Pt
catalyst [4,26]. Since Pt, which is considered as the best catalyst for
HER, is low in natural abundance and high in cost, alternative catalysts
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such as metal alloys, TMDs, and composite with TMDs were developed
[9,27]. In particular, the combination of MoS2 with graphene opens up
new possibilities in electronic applications and also shows great po-
tential as a catalyst [12,13,28–32]. To the best of our knowledge,
however, the direct wafer-scale growth of MoS2 on graphene at tem-
peratures compatible with CMOS technology has not yet been reported.
In this study, we demonstrate the fabrication of a MoS2-graphene het-
erostructure (MGH) on a 4 inch wafer at 300 °C. A thin Mo film, which
functions as a seed layer, was deposited on transferred graphene using
e-beam evaporation after which, sulfurization was carried out using

H2S plasma. Raman spectroscopy and high-resolution transmission
electron microscopy (HR-TEM) were used to confirm that MoS2 layers
are uniformly grown on the entire substrate. The chemical composition
of MoS2 on graphene was determined by X-ray photoelectron spectro-
scopy (XPS); observed XPS data confirmed that the atomic ratio of Mo
to S was 1:1.78, which is far beyond the stoichiometric value of the
standard MoS2. To exploit the unique properties of the nanocrystalline
MGH film with high density of sulfur vacancy, we tested it as a catalyst
for hydrodesulfurization and as an electro-catalyst for the hydrogen
evolution reaction (HER) [33].

2. Experimental

2.1. Growth and transfer of monolayer graphene.

Graphene was synthesized on Cu foils (25 μm-thick, Alpha Aesar,
99.99% purity) using a conventional CVD process. Cu foils were placed
in a 4 inch diameter quartz tube and after evacuation, H2 (8 sccm,
99.999%) was introduced into the chamber and the Cu foil was an-
nealed at 1040 °C for 2 h to remove residual impurities. Next, graphene
growth was carried out on the Cu foil for 1 h by injecting 30 sccm of
CH4 and 50 sccm of H2. Finally, the furnace was rapidly cooled to room
temperature under H2 atmosphere. To transfer the CVD-grown gra-
phene layer from the Cu foil, the as-grown graphene sample was coated
with a support layer of poly(methyl methacrylate) (PMMA, Microchem)
by spin coating. The Cu foil was dissolved in aqueous iron (III) chloride
(FeCl3) solution and the PMMA-coated graphene was washed several
times with deionized (DI) water before transferring it onto a SiO2/Si
wafer. The PMMA film was then completely dissolved in acetone.

2.2. Direct growth of MoS2-graphene heterostructure (MGH)

Growth of the MGH structure is schematically illustrated in Fig. 1. A
thin film of molybdenum, which serves as a seed layer for the growth of
MoS2, was deposited by e-beam evaporation [21]. The Mo-deposited
substrate was loaded into the PECVD chamber for sulfurization. Sul-
furization at 300 °C under H2S and Ar plasma atmosphere for 1.5 h led
to the formation of MGH.

2.3. Characterization

The crystallinity and number of layers of graphene and MGH were
characterized by Raman spectroscopy (Alpha300 M+, WITec GmbH,

Fig. 1. Schematic illustration of the synthesis of the uniform MGH film via
PECVD at 300 °C.

Fig. 2. (a) A photograph of wafer-scale MGH on a 4-inch SiO2/Si substrate. The rectangular (red dashed) and the circular (black dashed) regions indicate MGH and
bare MoS2 on SiO2/Si substrate, respectively. (b) Cross-sectional HR-TEM images of MGH (c) Electron energy loss spectroscopy elemental mapping images of MGH,
which are derived from the Mo M4,5, S L2,3, and C K ionization edges. (d) In-plane HR-TEM image of MGH (e) SAED pattern of the MGH shown in Fig. 2(d).
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excitation wavelength of 532 nm and laser power of 2mW) and HR-
TEM (JEM-2100F, JEOL). Samples for cross sectional transmission
electron microscopy (TEM) imaging were fabricated using a focused ion
beam (FIB, NX2000, HITACHI Ltd.) with a lift-out technique. The TEM
samples were etched using Ga+ ion beam from 30 keV to 5 keV during
the FIB milling process. Then a low-energy Ar+ ion beam of 1 keV was
used for final milling to minimize surface damage. The respective
chemical compositions of the samples were determined by X-ray pho-
toelectron spectroscopy (XPS, MultiLab 2000, Thermo VG) with Mg Kα
X-ray source; during XPS, the take-off angle of the MGH was maintained
at 45°. Topological profiles of the thin layers were measured using
atomic force microscopy (AFM, NX-100, Park system) and electro-
chemical data were recorded using an Autolab PGSTAT302N po-
tentiostat (Metrohm Autolab B.V.).

2.4. Electrochemical measurements

All the electrochemical measurements were carried out with a
standard three electrode cell using a potentiostat (Autolab
PGSTAT302N). A graphite rod (Sigma-Aldrich, 99.995%) and a

saturated calomel electrode (saturated KCl) were used as the counter
and reference electrodes (SCE, 0.256 V vs. RHE in 0.5 M H2SO4), re-
spectively; all the measured potentials were referenced to the reversible
hydrogen electrode (RHE) potential. Linear sweep voltammograms
(LSV) were traced using a glassy carbon electrode (GCE) (0.196 cm2,
Pine Research Instrumentation, USA) at a scan rate of 2mV s−1 and
rotation speed of 1600 rpm. Electrochemical impedance spectroscopy
(EIS) was performed in the frequency range 0.01–100,000 Hz at−0.4 V
(versus RHE) to determine the series resistance (Rs) and charge-transfer
resistance (Rct). All the data presented were corrected with Rs. The GCE
was polished with a 0.05 μm Al2O3 (Buehler) slurry, rinsed with deio-
nized (DI) water, cleaned in water for 10 s using an ultrasonic cleaner
and then washed once again with DI water. The bare glassy carbon
electrode was polished to a mirror surface using 0.3 and 0.05 μm Al2O3

powders, consecutively, and thoroughly rinsed twice with DI water
between each polishing step. Next, the electrode was washed succes-
sively in ultra-sonic bath with 1:1 (v/v) HNO3 aqueous solution, twice
in DI water, once in ethanol, and again twice in DI water; finally, the
clean electrode was dried in air.

3. Results and discussion

A photograph of the 100-cm2-area MGH (dark blue rectangular re-
gion) shows highly uniform growth of MGH on the 4-inch SiO2/Si wafer
in Fig. 2(a). HR-TEM was conducted to determine both the number of
layers and the crystallinity of the MGH. Cross sectional HR-TEM image
of MGH and its corresponding electron energy loss spectroscopy ele-
mental mapping images show that top MoS2 layers of total thickness
6–7 nm are uniformly and continuously grown on the underlying gra-
phene (Fig. 2(b) and (c)). The d-spacing of the MoS2 layers (yellow line)
and graphene (red line) is 0.63–0.65 nm and 0.30–0.32 nm, respec-
tively, which is consistent with that measured for typical bulk MoS2 and
graphite (Fig. 2(b)) [15]. An in-plane HR-TEM image of MGH in
Fig. 2(d) depicts the overlapping of MoS2 and graphene layers with
grain boundaries. The corresponding selected area electron diffraction
(SAED) patterns of the MGH consist of single (red circles) and multiple
(yellow circles) sets of diffractions spots with six-fold symmetry origi-
nating from the top layer of the nanocrystalline MoS2 and the bottom
graphene layer, respectively, as depicted in Fig. 2(e). We also confirmed
that the crystallinity of the bare MoS2 is similar to that of the MGH in
Fig. S1. The overall crystal structure of MGH was elucidated by XRD,
where four diffraction peaks at 2θ values of 14.5°, 33°, 39°, and 59°,
corresponding to the (0 0 2), (1 0 0), (1 0 3), and (1 1 0) planes, re-
spectively, are seen, as marked in Fig. S2 (JCPDS 37-1492). We note
here that the strong (0 0 2) reflection confirms the presence of the
layered structure of MoS2 [34]. The topology of the MGH was in-
vestigated by AFM and the root mean square (RMS) value is estimated
to be 1.95 nm (Fig. S3).

The chemical states of both the top-MoS2 film and the bottom-gra-
phene layer in the MGH were analyzed sequentially by depth profiling
XPS [35]. The Mo(3d) and S(2p) XPS spectra are presented in Fig. 3(a)
and (b). The binding energies of the Mo4+ 3d peaks at 229.2 and
232.4 eV corresponding to Mo 3d5/2 and Mo 3d3/2, respectively, and the
S2- 2p peaks at 162.1 and 163.3 eV, corresponding to the S 2p3/2 and S
2p1/2, respectively, confirm the elemental composition of MoS2 on the
surface of the MGH. The atomic ratio of S to Mo is found to be 1.78,
which is close to the stoichiometric value of 2 in MoS2 (Fig. S4) [36].
After measuring the XPS of the MoS2 layer, plasma etching was carried
out by Ar+ ion beam (4 kW, 6 μA, 3min). It is seen that after plasma
etching, the signals originating from MoS2 layers disappear but those
from the underlying graphene appear. The binding energies of
284.6 eV, 285.2 eV, and 287.1 eV in the C1s core level spectral region,
due to sp2 carbon-carbon, sp3 carbon-carbon, and carbon-oxygen bonds,
respectively, indicate that the carbon atoms maintained the honeycomb
structure and are not chemically bonded to Mo and S [37].

To explore the effects of graphene during sulfurization, we have

Fig. 3. XPS spectra of an MGH thin film before and after Ar etching for depth
profiling (a) Mo 3d (b) S 2p for MoS2 and (c) C 1s for graphene, respectively.
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simultaneously grown MoS2 on both graphene and amorphous SiO2

surfaces; more details on the preparation of partially grown graphene
and its transfer on SiO2/Si substrate are described in Fig. S5. The
Raman spectra from both the MGH (black line) and bare MoS2 (red line)
show strong and broad peaks at 373–379 cm−1 and 400–406 cm−1,
which correspond to the in-plane vibration mode (E12g) and out-of-plane
vibration mode (A1g), respectively, with weak defect-related satellite
Raman peaks (marked as * in Fig. 4 (a)) [38]. In comparison to bare
MoS2, the A1g peak for the MGH is upshifted and the peak separation
between E12g and A1g (Δk) is increased, indicating that the density of
defects increases during sulfurization on the graphene (Fig. 4(b–d))
[13,39]. Interestingly, intensity of peak at 448 cm−1, which correspond
to the S vacancy in MoS2, is significantly increased [38]. Thus, we may
infer that the density of point defects (e.g. sulfur vacancies) in MGH
should be higher than that in bare MoS2 [40]. The lattice constant
difference of typical metal and MoS2 is less than 1%, while that of
graphene and MoS2 is about 21.9%. Therefore, growing MoS2 on the
graphene, which has the hexagonal crystal structure and strong inter-
action, may induce large numbers of point defects compared to growing
MoS2 on the amorphous SiO2 surface [41–43]. We also note that the S/
Mo stoichiometry of MGH from XPS is slightly decrease to 1.78, which
indicates a reduction in the total amount of sulfur (Fig. S4). Compared
to the Raman spectrum of pristine graphene on SiO2/Si substrate, the
intensities of the G peak (∼1580 cm−1), and 2D peak (∼2580 cm−1)
are not significantly changed after MoS2 growth, suggesting that the
hexagonal carbon structure of graphene is not notably affected by
plasma during sulfurization [44].

To exploit the properties of crystalline MoS2 on conducting gra-
phene, we have investigated the MGH as a catalyst for hydro-
desulfurization and as an electro-catalyst in the HER [45]. To demon-
strate its catalytic activity, we transferred the MGH film onto a mirror-
polished GCE as shown in Fig. S6. Due to the very weak interaction
between the graphene layer and the SiO2 surface, it was possible to
delaminate the MGH even in the presence of a MoS2 film on graphene
[2,46]. For comparison, we transferred a bare MoS2 film on to the
pristine GCE using a conventional transfer process. (See Fig. S7)

Electrochemical measurements were performed in 0.5 M H2SO4

solution using a typical three-electrode cell setup; the cathodic polar-
ization curves and Tafel plots are shown in Fig. 5. It is seen that 20% Pt/
C exhibits a near-zero potential and has the highest HER activity when
compared to other catalysts [47,48]. In contrast, the GCE and pristine
graphene on GCE electrodes do not show any catalytic behavior.

However, the onset over-potential (η) and Tafel slope of the MGH were
0.21 V and 68mV/dec, which was lower than that of bare MoS2,
pointing to the enhanced catalytic performance of the MGH [49]. It is
noted here that MGH shows a better catalytic activity than those pre-
viously reported for CVD grown MoS2 (including exfoliated MoS2) as
shown in Table 1. The onset η values are labeled by stars or circles of
different colors in Fig. 5(a) [26,50–53]. The star indicates some sort of
treatment such as plasma, annealing, chemical exfoliation, and vacancy
for the sample, whereas, those marked by circles indicate that the
sample was not subjected to any treatment; the details of the different
procedures are given in Table 1. EIS was used to further study the in-
terfacial reactions and electrode kinetics during HER processes for MGH
and the bare MoS2 electrodes. Although the difference in ohmic re-
sistance between the two films is negligible, the charge-transfer re-
sistance of 42 O (Ω) for the MGH film is significantly lower than that of
bare MoS2, which is 311Ω as shown in Fig. 5(c) [51,54]. Thus, the
enhanced catalytic activity of the MGH film electrode can be attributed
to be due the following: (1) The large density of grain boundaries and
sulfur vacancies on the basal plane in the MGH structure, which give
rise to a high density of active sites. (2) The efficient charge transport

Fig. 4. (a) Representative Raman spectra of MGH and bare MoS2 at the marked
regions (inset shows the Raman mapping of the integrated intensity ratio of the
G and 2D). Raman mapping image of MGH for (b) E12g−A1g, (c) E12g and (d) A1g

peak, respectively.

Fig. 5. Electrochemical HER performances of MGH and bare MoS2 on GEC. (a)
Polarization curves measured by LSV along with results from previously pub-
lished works (b) Tafel plots obtained from polarization curves. (c) EIS of MGH
and bare MoS2 fabricated at 300 °C on GCE; inset shows the spectrum for the
specific range from 0 to 70Ω.
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pathway through the highly conductive graphene layer from the active
sites in MoS2 to the electrode in the MGH film [29,31]. (3) The re-
duction of band gap at the domain edge of nanocrystalline MGH, which
sufficiently decrease hydrogen recombination barrier [55].

4. Conclusion

In conclusion, we have successfully synthesized a 4 inch sized MoS2-
on-graphene heterostructure through a H2S sulfurization process. The
Raman and HR-TEM results reveal that 5–6 MoS2 layers with a large
density of sulfur vacancies and grain boundaries are uniformly grown
on the entire substrate. To exploit the nanocrystalline MGH film con-
taining a high sulfur vacancy concentration, we investigated the MGH
as a catalyst for hydro-desulfurization and as an electro-catalyst for the
HER. When compared to MoS2 grown from an amorphous SiO2 sub-
strate, the MGH electrodes have smaller onset potential and Tafel slope,
indicating their enhanced catalytic performance. This enhancement can
be attributed to the high density of defects (grain boundaries and sulfur
vacancies) present in MoS2 synthesized on graphene, which while in-
creasing the total number of active sites, provide an effective charge
transport pathway through the highly conducting graphene layer. We
believe that this study will lead to the development of practical stra-
tegies for the large-scale synthesis of various 2D heterostructures at low
temperatures and thus promote their use in a wide range of applica-
tions.
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